Publish Events & Email Alerts

Subscribe our email alerts and Publish your events with us

You'll Receive & Get Benefits :

Publish & Subscribe

 Technicalsymposium


Join Our Email Alerts-Subscribe
Important Note:Login & Check Your Email Inbox and Activate Confirmation Link


Enter Your Email :

Aptitude Round Question-Surds and Indices-Free Download



1. If m and n are whole numbers such that mn = 169, then the value of (m - 1) n + 1 is:

a. 1

b. 13

c. 169

d. 1728

2. The simplified form of x9/2 . √y7 is:

x7/2 . √y3

a. x2/y2

b. x2 . y2

c. xy

d. x2/y

3. If √(3 + ³√x) = 2, then x is equal to :

a. 1

b. 2

c. 4

d. 8

4. If x is an integer, find the minimum value of x such that 0.00001154111 x 10x exceeds 1000.

a. 8

b. 1

c. 7

d. 6

5. Which among the following is the greatest?

a. 23^2

b. 22^3

c. 32^3

d. 33^3

6. Solve for m if 49(7m) = 3433m + 6

a. -8/6

b. -2

c. -4/6

d. -1

7. Solve for 2y^√2^2 = 729.

a. ±3

b. ±1

c. ±2

d. ±4

8. √[200√[200√[200……..∞]]] = ?

a. 200

b. 10

c. 1

d. 20

9. If a and b are positive numbers, 2a = b3 and b a = 8, find the value of a and b.

a. a = 2, b = 3

b. a = 3, b = 2

c. a = b = 3

d. a = b = 2

10. If 44m + 2 = 86m - 4, solve for m.

a. 7/4

b. 2

c. 4

d. 1

11. If 2x x 162/5 = 21/5, then x is equal to:

a. 2/5

b. -2/5

c. 7/5

d. -7/5

12. If ax = by = cz and b2 = ac, then y equals :

a. xz/x + z

b. xz/2(x + z)

c. xz/2(x - z)

d. 2xz/(x + z)

13. If 7a = 16807, then the value of 7(a - 3) is:

a. 49

b. 343

c. 2401

d. 10807

14. If 3x - 3x - 1 = 18, then the value of x x is:

a. 3

b. 8

c. 27

d. 216

15. If 2(x - y) = 8 and 2(x + y) = 32, then x is equal to:

a. 0

b. 2

c. 4

d. 6

16. If ax = b, by = c and cz = a, then the value of xyz is:

a. 0

b. 1

c. 1/abc

d. abc

17. 125 x 125 x 125 x 125 x 125 = 5?

a. 5

b. 3

c. 15

d. 2

18. If 52n - 1 = 1/(125n - 3), then the value of n is:

a. 3

b. 2

c. 0

d. -2

19. If x = 5 + 2√6, then (x - 1) is equal to:

√x

a. √2

b. 2√2

c. √3

d. 2√3

20. Number of prime factors in 612 x (35)28 x (15)16 is :

(14)12 x (21)11

a. 56

b. 66

c. 112

d. None of these

Answer & Explanations

1. Exp: Clearly, m = 13 and n = 2.

Therefore, (m - 1) n + 1 = (13 - 1)3 = 12³ = 1728.

2. Exp: x9/2 . √y5 is: = x(9/2 - 5/2) . y(7/2 - 3/2) = x2. y 2

x7/2 . √y3

3. Exp: On squaring both sides, we get:

3 + ³√x = 4 or ³√x = 1.

Cubing both sides, we get x = (1 x 1 x 1) = 1

4. Exp: Considering from the left if the decimal point is shifted by 8 places to the right, the number
becomes 1154.111. Therefore, 0.00001154111 x 10x exceeds 1000 when x has a minimum value of
8.

5. Exp: 23^2 = 29

22^3 = 28

32^3 = 38

33^3 = 327

As 327 > 38, 29 > 28 and 327 > 29. Hence 327 is the greatest among the four.

6. Exp: 49(7m) = 3433m + 6 Þ 727m Þ (73)3m + 6 Þ 7 2 + m = 79m + 18

Equating powers of 7 on both sides,

m + 2 = 9m + 18

-16 = 8m Þ m = -2.

7. Exp: 3y^√2^2 = 729

3y^2 = 34 (√22 = (21/2) 2 = 2)

equating powers of 2 on both sides,

y2 = 4 Þ y = ±2

8. Exp: Let √[200√[200√[200……..∞]]] = x ; Hence √200x = x

Squaring both sides 200x = x² Þ x (x - 200) = 0

Þ x = 0 or x - 200 = 0 i.e. x = 200

As x cannot be 0, x = 200.

9. Exp: 2a = b3 ….(1)

ba = 8 …..(2)

cubing both sides of equation (2), (ba)3 = 8 3

b3a = (b3)a = 512.

from (1), (2a)a = (23)3.

comparing both sides, a = 3

substituting a in (1), b =2.

10. Exp: 44m + 2 = (23)6m - 4 => 4 4m + 2 = 218m - 12

Equating powers of 2 both sides,

4m + 2 = 18m - 12 => 14 = 14m => m = 1.

11. Exp: 2x x 162/5 = 21/5

=> 2x x (24)2/5 = 21/5 => 2x x 28/5 = 21/5.

=> 2(x + 8/5) = 21/5

=> x + 8/5 = 1/5 => x = (1/5 - 8/5) = -7/5.

12. Exp: Let ax = by = cz = k. Then, a = k 1/x, b = k1/y, c = k1/z.

Therefore, b² = ac => (k1/y)2 = k1/x x k1/z => k2/y = k (1/x + 1/z)

Therefore, 2/y = (x + z)/xz => y/2 = xz/(x + z) => y = 2xz/(x + z).

13. Exp: 7a = 16807, => 7a = 75, a = 5.

Therefore, 7(a - 3) = 7(5 - 3) = 7² = 49.

14. Exp: 3x - 3x - 1 = 18 => 3x - 1 (3 - 1) = 18 => 3x - 1 = 9 = 3² => x - 1 = 2 => x = 3.

15. Exp: 2(x - y) = 8 = 2³ => x - y = 3 ---(1)

2(x + y) = 32 = 25 => x + y = 5 ---(2)

On solving (1) & (2), we get x= 4.

16. Exp: a1 = cz = (by)z = b yz = (ax)yz = axyz. Therefore, xyz = 1.

17. Exp: 125 x 125 x 125 x 125 x 125 = (5³ x 5³ x 5³ x 5³ x 5³) = 5(3 + 3 + 3 + 3 + 3) = 515.

18. Exp: 52n - 1 = 1/(125n - 3) => 52n - 1 = 1/[(53)n - 3] = 1/[5 (3n - 9)] = 5(9 - 3n).

=> 2n - 1 = 9 - 3n => 5n = 10 => n = 2.

19. Exp: x = 5 + 2√6 = 3 + 2 + 2√6 = (√3)² + (√2)² + 2 x √3 x √2 = (√3 + √2)²

Also, (x - 1) = 4 + 2√6 = 2(2 + √6) = 2√2 (√2 + √3).

Therefore, (x - 1) = 2√2 (√3 + √2) = 2√2.

√x (√3 + √2)

20. Exp: 612 x (35)28 x (15)16 = (2 x 3)12 x (5 x 7)28 x (3 x 5)16 =

(14)12 x (21)11 (2 x 7)12 x (3 x 7) 11

= 212 x 312 x 528 x 728 x 3 16 x 516 = 2(12 - 12) x 3(12 + 16 - 11) x 5 (28 + 16) x 7(28 - 12 - 11)

212 x 712 x 311 x 711

= 20 x 317 x 544 x 7-5 = 317 x 544

75

Number of prime factors = 17 + 44 + 5 = 66

I. Laws of Indices:

i. am * an = am+n

ii. am/an = am-n
iii. (am)n =amn
iv. (ab)n = anbn
v. (a/b)n = an/bn
vi. a0= 1

1. To find √ (a + √b) write it in the form m + n + 2√mn, such that m + n = a and 4mn = b, then √ (a + √b) = ±(√m + √n)

2. (√a.√a.√a….∞) = a
3. If (√a + √a + √a……..∞) = p, then p (p - 1) = a.
4. If a + √b = c + √d, then a = c and b = d.

Examples:
1. Simplify: (i) (81)3/4 (ii) (1/64)-5/6 (iii) (256) -1/4

Solution:(i) (81)3/4 =(34)3/4 =3 3=27.
(ii) (1/64)-5/6 = 645/6 = (26) 5/6= 25 = 32

(iii) (256)-1/4 =( 1/256)1/4 = [( 1/4)4] 1/4 =1/4

2. If x=3+2√2, then the value of ( √x- (1/√x)) is:........
Solution:
Description: http://p3.placement.freshersworld.com/power-preparation/sites/default/files/Surds.JPG

Exercise Questions


1.The value of (√8)1/3 is:
a.2
b. 4
c. 2
d. 8

Answer: Option c.
(√8)1/3 = (81/2)1/3= 81/6 = (23)1/6= 21/2= √2.

2. The value of 51/4 * (125)0.25 is:
a. √5
b.5√5
c.5
d.25
Answer: Option c
50.25 * (53)0.25 = 51 = 5.

3. The value of (32/243)-4/5 is:
a. 4/9
b. 9/4
c. 16/81
d. 81/16

Answer: Option d.
(32/243)-4/5 = (243/32)4/5 = [(3/2)5] 4/5 = 81/16

4. (1/216)-2/3 ÷ (1/27)-4/3 = ?
a. 3/4
b. 2/3
c. 4/9
d. 1/8
Answer: Option c.
(1/216)-2/3 ÷ (1/27)-4/3 = 2162/3 ÷ 274/3 = (63)2/3 ÷ (33)4/3 = 4/9

5. (2n+4 -2.2n)/(2.2n+3) = 2-3 is equal to:
a. 2n+1
b. -2n+1 + 1/8
c. 9/8 - 2n
d. 1
Answer: Option d.

(2n+4 -2.2n)/2.2n+3 + 1/23= 7/8 + 1/8 = 1

6. If 5√5 * 53 ÷ 5-3/2 = 5a+2 , the value of a is:
a. 4
b. 5
c.6
d. 8

Answer: Option a
53/2 * 53 ÷ 5-3/2 = 5a+2

53/2 + 3 + 3/2 = 5a+2
3/2 + 3 + 3/2 = a+2
a+2=6; a=4

7. If √2n =64, then the value of n is:
a. 2
b. 4
c. 6
d. 12

Answer: Option d
√2n =64 => 2n/2 = 64= 26
n/2=6; n=12

8.The simplified form of (x7/2 /x5/2).√y3 /√y )is :
a.x2/y
b. x3/y2
c. x6/y3
d. xy
Answer: Option d

(x7/2 /x5/2 ). (√y3 /√y) = x 7/2 -5/2. y3/2 - 1/2 = xy


Technicalsymposium.com-Find All Aptitude Materials & Books