147302 DIGITAL ELECTRONICS
Mrs. J. Joselin Jeyasheela/Sr. Lect/ECE

Advantages


The usual advantages of digital circuits when compared to analog circuits are:

Digital systems interface well with computers and are easy to control with software. New features can often be added to a digital system without changing hardware. Often this can be done outside of the factory by updating the product's software. So, the product's design errors can be corrected after the product is in a customer's hands. Information storage can be easier in digital systems than in analog ones. The noise-immunity of digital systems permits data to be stored and retrieved without degradation. In an analog system, noise from aging and wear degrade the information stored. 
· In a digital system, as long as the total noise is below a certain level, the information can be recovered perfectly. 

 
Robustness


One of the primary advantages of digital electronics is its robustness. Digital electronics are robust because if the noise is less than 

the noise margin then the system performs as if there were no noise at all. Therefore, digital signals can be regenerated to achieve lossless 
data transmission, within certain limits.


Analog signal transmission and processing, by contrast, always introduces noise.


Disadvantages


In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus producing more heat as well. In 
portable or battery-powered systems this can limit use of digital systems.


For example, battery-powered cellular telephones often use a low-power analog front-end to amplify and tune in the radio signals from the 
base station. However, a base station has grid power and can use power-hungry, but very flexible software radios. Such base stations 

can be easily reprogrammed to process the signals used in new cellular standards.


Digital circuits are sometimes more expensive, especially in small quantities.


The sensed world is analog, and signals from this world are analog quantities. For example, light, temperature, sound, electrical 
conductivity, electric and magnetic fields are analog. Most useful digital systems must translate from continuous analog signals to discrete 
digital signals. This causes quantization errors.


Quantization error can be reduced if the system stores enough digital data to represent the signal to the desired degree of fidelity. The 
Nyquist-Shannon sampling theorem provides an important guideline as to how much digital data is needed to accurately portray a given 
analog signal.

UNIT I -NUMBER SYSTEMS
	Numbering System 

	
	
	Many number systems are in use in digital technology. The most common are the decimal, binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is a tool that we use every day. Examining some of its characteristics will help us to better understand the other systems. In the next few pages we shall introduce four numerical representation systems that are used in the digital system. There are other systems, which we will look at briefly.

	
	
	· Decimal 

· Binary 

· Octal 

· Hexadecimal 

	 
	 
	[image: image1.png]




	 
	[image: image2.png]



	Decimal System 

	
	
	The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The decimal system is also called the base-10 system because it has 10 digits.

	 
	 
	[image: image3.png]




	
	
	103
102
101
100
10-1
10-2
10-3
=1000 

=100 

=10 

=1

.

=0.1 

=0.01 

=0.001

Most Significant Digit

Decimal point

Least Significant Digit



	 
	 
	[image: image4.png]




	
	
	Even though the decimal system has only 10 symbols, any number of any magnitude can be expressed by using our system of positional weighting.

	 
	 
	[image: image5.png]




	 
	[image: image6.png]



	Decimal Examples 

	 
	 
	[image: image7.png]




	
	
	· 3.1410 

· 5210 

· 102410 

· 6400010 

	 
	 
	[image: image8.png]




	 
	[image: image9.png]



	Binary System 

	
	
	In the binary system, there are only two symbols or possible digit values, 0 and 1. This base-2 system can be used to represent any quantity that can be represented in decimal or other base system.

	 
	 
	[image: image10.png]




	
	
	23
22
21
20
2-1
2-2
2-3
=8 

=4 

=2 

=1

.

=0.5 

=0.25 

=0.125

Most Significant Digit

Binary point

Least Significant Digit



	 
	 
	[image: image11.png]




	 
	[image: image12.png]



	Binary Counting 

	
	
	The Binary counting sequence is shown in the table:

	 
	 
	[image: image13.png]




	
	
	23
22
21
20
Decimal
0

0

0

0

0

0

0

0

1

1

0

0

1

0

2

0

0

1

1

3

0

1

0

0

4

0

1

0

1

5

0

1

1

0

6

0

1

1

1

7

1

0

0

0

8

1

0

0

1

9

1

0

1

0

10

1

0

1

1

11

1

1

0

0

12

1

1

0

1

13

1

1

1

0

14

1

1

1

1

15



	 
	 
	[image: image14.png]




	
	
	

	 
	 
	[image: image15.png]




	 
	[image: image16.png]



	Representing Binary Quantities 

	
	
	In digital systems the information that is being processed is usually presented in binary form. Binary quantities can be represented by any device that has only two operating states or possible conditions. 
E.g.. a switch is only open or closed. We arbitrarily (as we define them) let an open switch represent binary 0 and a closed switch represent binary 1. Thus we can represent any binary number by using series of switches.

	 
	 
	[image: image17.png]




	 
	[image: image18.png]



	Typical Voltage Assignment 

	
	
	Binary 1: Any voltage between 2V to 5V

	
	
	Binary 0: Any voltage between 0V to 0.8V

	
	
	Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and TTL Logic, this may cause error in a digital circuit. Today's digital circuits works at 1.8 volts, so this statement may not hold true for all logic circuits.

	 
	 
	[image: image19.png]




	
	
	[image: image20.png]Logic 1

Not Used

Logic 0

Volts

1

www.asic-world.com

1






	 
	 
	[image: image21.png]




	
	
	We can see another significant difference between digital and analog systems. In digital systems, the exact voltage value is not important; eg, a voltage of 3.6V means the same as a voltage of 4.3V. In analog systems, the exact voltage value is important.

	 
	 
	[image: image22.png]




	
	
	The binary number system is the most important one in digital systems, but several others are also important. The decimal system is important because it is universally used to represent quantities outside a digital system. This means that there will be situations where decimal values have to be converted to binary values before they are entered into the digital system.

	 
	 
	[image: image23.png]




	
	
	In additional to binary and decimal, two other number systems find wide-spread applications in digital systems. The octal (base-8) and hexadecimal (base-16) number systems are both used for the same purpose- to provide an efficient means for representing large binary system.

	 
	 
	[image: image24.png]




	 
	[image: image25.png]



	Octal System 

	
	
	The octal number system has a base of eight, meaning that it has eight possible digits: 0,1,2,3,4,5,6,7.

	 
	 
	[image: image26.png]




	
	
	83
82
81
80
8-1
8-2
8-3
=512 

=64 

=8 

=1

.

=1/8 

=1/64

=1/512

Most Significant Digit

Octal point

Least Significant Digit



	 
	 
	[image: image27.png]




	 
	[image: image28.png]



	Octal to Decimal Conversion 

	 
	 
	[image: image29.png]




	
	
	· 2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910 

· 24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510 

· 11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510 

· 12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510 

	 
	 
	[image: image30.png]




	 
	[image: image31.png]



	Hexadecimal System 

	
	
	The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

	 
	 
	[image: image32.png]




	
	
	163
162
161
160
16-1
16-2
16-3
=4096 

=256 

=16 

=1

.

=1/16 

=1/256 

=1/4096

Most Significant Digit

Hexa Decimal point

Least Significant Digit



	 
	 
	[image: image33.png]




	 
	[image: image34.png]



	Hexadecimal to Decimal Conversion 

	 
	 
	[image: image35.png]




	
	
	· 24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510 

· 11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510 

· 12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510 

	Code Conversion 

	
	
	Converting from one code form to another code form is called code conversion, like converting from binary to decimal or converting from hexadecimal to decimal.

	 
	 
	[image: image36.png]




	 
	[image: image37.png]



	Binary-To-Decimal Conversion 

	
	
	Any binary number can be converted to its decimal equivalent simply by summing together the weights of the various positions in the binary number which contain a 1. 

	 
	 
	[image: image38.png]




	
	
	Binary
Decimal
110112
24+23+01+21+20
=16+8+0+2+1

Result

2710


	 
	 
	[image: image39.png]




	
	
	and

	 
	 
	[image: image40.png]




	
	
	Binary
Decimal
101101012
27+06+25+24+03+22+01+20
=128+0+32+16+0+4+0+1

Result

18110


	 
	 
	[image: image41.png]




	
	
	You should have noticed that the method is to find the weights (i.e., powers of 2) for each bit position that contains a 1, and then to add them up.

	 
	 
	[image: image42.png]




	 
	[image: image43.png]



	Decimal-To-Binary Conversion 

	 
	 
	[image: image44.png]




	
	
	There are 2 methods:

	 
	 
	[image: image45.png]




	
	
	· Reverse of Binary-To-Decimal Method 

· Repeat Division 

	 
	 
	[image: image46.png]




	 
	[image: image47.png]



	Reverse of Binary-To-Decimal Method 

	 
	 
	[image: image48.png]




	
	
	Decimal
Binary
4510
=32 + 0 + 8 + 4 +0 + 1

=25+0+23+22+0+20
Result 

=1011012


	 
	 
	[image: image49.png]




	 
	 
	[image: image50.png]




	 
	[image: image51.png]



	Repeat Division-Convert decimal to binary 

	
	
	This method uses repeated division by 2.

	 
	 
	[image: image52.png]




	
	
	Convert 2510 to binary

	 
	 
	[image: image53.png]




	
	
	Division
Remainder
Binary
25/2 

= 12+ remainder of 1 

1 (Least Significant Bit)

12/2 

= 6 + remainder of 0 

0

6/2 

= 3 + remainder of 0 

0

3/2 

= 1 + remainder of 1 

1

1/2 

= 0 + remainder of 1 

1 (Most Significant Bit)

Result 

2510 

= 110012


	 
	 
	[image: image54.png]




	
	
	The Flow chart for repeated-division method is as follows:

	 
	 
	[image: image55.png]




	
	
	[image: image56.png]divide by 2

Record quotient
(Q)and
Remainder (R

Collec R's ino desred
binary number with st R
fos LS and st R as Mise)

‘ww-asic-world-com





	 
	 
	[image: image57.png]




	
	
	

	 
	 
	[image: image58.png]




	 
	[image: image59.png]



	Binary-To-Octal / Octal-To-Binary Conversion 

	 
	 
	[image: image60.png]




	
	
	Octal Digit 
0 
1 
2 
3 
4 
5 
6 
7
Binary Equivalent 

000 

001 

010 

011 

100 

101 

110 

111



	 
	 
	[image: image61.png]




	
	
	Each Octal digit is represented by three binary digits.

	 
	 
	[image: image62.png]




	
	
	Example:

	
	
	100 111 0102 = (100) (111) (010)2 = 4 7 28

	 
	 
	[image: image63.png]




	 
	[image: image64.png]



	Repeat Division-Convert decimal to octal 

	 
	 
	[image: image65.png]




	
	
	This method uses repeated division by 8.

	 
	 
	[image: image66.png]




	
	
	Example: Convert 17710 to octal and binary

	 
	 
	[image: image67.png]




	
	
	Division
Result
Binary
177/8 

= 22+ remainder of 1 

1 (Least Significant Bit)

22/ 8 

= 2 + remainder of 6 

6

2 / 8 

= 0 + remainder of 2 

2 (Most Significant Bit)

Result 

17710 

= 2618
Binary

= 0101100012


	 
	 
	[image: image68.png]




	 
	[image: image69.png]



	Hexadecimal to Decimal/Decimal to Hexadecimal Conversion 

	 
	 
	[image: image70.png]




	
	
	Example:

	
	
	2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

	 
	 
	[image: image71.png]




	 
	[image: image72.png]



	Repeat Division- Convert decimal to hexadecimal 

	
	
	This method uses repeated division by 16.

	 
	 
	[image: image73.png]




	
	
	Example: convert 37810 to hexadecimal and binary:

	 
	 
	[image: image74.png]




	
	
	Division
Result
Hexadecimal
378/16 

= 23+ remainder of 10 

A (Least Significant Bit)23

23/16 

= 1 + remainder of 7 

7

1/16 

= 0 + remainder of 1 

1 (Most Significant Bit)

Result 

37810 

= 17A16
Binary 

= 0001 0111 10102


	 
	 
	[image: image75.png]




	 
	[image: image76.png]



	Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion 

	 
	 
	[image: image77.png]




	
	
	Hexadecimal Digit 
0 
1 
2 
3 
4 
5 
6 
7
Binary Equivalent 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111



	 
	 
	[image: image78.png]




	
	
	Hexadecimal Digit 
8 
9 
A 
B 
C 
D 
E 
F
Binary Equivalent 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111



	 
	 
	[image: image79.png]




	
	
	Each Hexadecimal digit is represented by four bits of binary digit.

	 
	 
	[image: image80.png]




	
	
	Example:

	 
	 
	[image: image81.png]




	
	
	1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

	 
	 
	[image: image82.png]




	 
	[image: image83.png]



	Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion 

	 
	 
	[image: image84.png]




	
	
	· Convert Octal (Hexadecimal) to Binary first. 

· Regroup the binary number by three bits per group starting from LSB if Octal is required. 

· Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required. 

	 
	 
	[image: image85.png]




	
	
	Example:

	 
	 
	[image: image86.png]




	
	
	Convert 5A816 to Octal.

	 
	 
	[image: image87.png]




	
	
	Hexadecimal 
Binary/Octal
5A816 

= 0101 1010 1000 (Binary)

= 010 110 101 000 (Binary)

Result 

= 2 6 5 0 (Octal)



	
	Binary Codes 

	
	Binary codes are codes which are represented in binary system with modification from the original ones. Below we will be seeing the following:

 Weighted Binary Systems 

Non Weighted Codes 

	 
	· 

	
	· 

	
	 
	[image: image88.png]




	 
	Weighted Binary Systems 

Weighted binary codes are those which obey the positional weighting principles, each position of the number represents a specific weight. The binary counting sequence is an example.

	
	

	 
	 
	[image: image89.png]




	
	Decimal
8421
2421
5211
Excess-3
0

0000

0000

0000

0011

1

0001

0001

0001

0100

2

0010

0010

0011

0101

3

0011

0011

0101

0110

4

0100

0100

0111

0111

5

0101

1011

1000

1000

6

0110

1100

1010

1001

7

0111

1101

1100

1010

8

1000

1110

1110

1011

9

1001

1111

1111

1100


	

	 
	 
	[image: image90.png]




	 
	8421 Code/BCD Code 
The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to assign weights to the binary bits according to their positions. The weights in the BCD code are 8,4,2,1.

 Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9 because:

 

1x8+0x4+0x2+1x1 = 9

 

2421 Code 

This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the decimal numbers from 0 to 9.

	
	

	 
	

	
	

	 
	

	
	

	 
	

	 
	

	
	

	 
	 
	[image: image91.png]




	 
	[image: image92.png]



	5211 Code 

	
	This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the decimal numbers from 0 to 9. 

 

	 
	

	
	

	 
	 
	[image: image93.png]




	 
	[image: image94.png]



	Reflective Code 

	
	A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the 8421 code is not.

 Sequential Codes 

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

	 
	

	 
	

	
	

	 
	 
	[image: image95.png]




	 
	[image: image96.png]



	Non Weighted Codes 

	
	Non weighted codes are codes that are not positionally weighted. That is, each position within the binary number is not assigned a fixed value.

	 
	 
	[image: image97.png]




	 
	[image: image98.png]



	Excess-3 Code 

	
	Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the fact that each binary code is the corresponding 8421 code plus 0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

	 
	

	
	

	 
	 
	[image: image99.png]




	 
	[image: image100.png]



	Gray Code 

	
	The gray code belongs to a class of codes called minimum change codes, in which only one bit in the code changes when moving from one code to the next. The Gray code is non-weighted code, as the position of bit does not contain any weight. The gray code is a reflective digital code which has the special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-distance code. In digital Gray code has got a special place. 

	 
	 
	[image: image101.png]




	
	
	Decimal Number
Binary Code
Gray Code
0 

0000 

0000

1 

0001 

0001

2 

0010 

0011

3 

0011 

0010

4 

0100 

0110

5 

0101 

0111

6 

0110 

0101

7 

0111 

0100

8 

1000 

1100

9 

1001 

1101

10 

1010 

1111

11 

1011 

1110

12 

1100 

1010

13 

1101 

1011

14 

1110 

1001

15 

1111 

1000



	 
	 
	[image: image102.png]




	 
	
	Binary to Gray Conversion 

	 
	 
	[image: image103.png]




	
	· Gray Code MSB is binary code MSB. 

· Gray Code MSB-1 is the XOR of binary code MSB and MSB-1. 

· MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code. 

· MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code. 

	Error Detecting and Correction Codes 

	For reliable transmission and storage of digital data, error detection and correction is required. Below are a few examples of codes which permit error detection and error correction after detection.

	Error Detecting Codes 
	[image: image104.png]



	

	
	
	

	When data is transmitted from one point to another, like in wireless transmission, or it is just stored, like in hard disks and memories, there are chances that data may get corrupted. To detect these data errors, we use special codes, which are error detection codes.

	 
	 
	[image: image105.png]




	 

Parity 

In parity codes, every data byte, or nibble (according to how user wants to use it) is checked if they have even number of ones or even number of zeros. Based on this information an additional bit is appended to the original data. Thus if we consider 8-bit data, adding the parity bit will make it 9 bit long.

 At the receiver side, once again parity is calculated and matched with the received parity (bit 9), and if they match, data is ok, otherwise data is corrupt.

 There are two types of parity:

· Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When the number of ones is odd then parity bit is set to 1. 

Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When number of ones is even then parity bit is set to 1.



	 The parity method is calculated over byte, word or double word. But when errors need to be checked over 128 bytes or more (basically blocks of data), then calculating parity is not the right way. So we have checksum, which allows to check for errors on block of data. There are many variations of checksum.

 Adding all bytes 

· CRC 

· Fletcher's checksum 

· Adler-32 

 

 The simplest form of checksum, which simply adds up the asserted bits in the data, cannot detect a number of types of errors. In particular, such a checksum is not changed by:

 

 

· Reordering of the bytes in the message 

· Inserting or deleting zero-valued bytes 

· Multiple errors which sum to zero 

 

 Example of Checksum : Given 4 bytes of data (can be done with any number of bytes): 25h, 62h, 3Fh, 52h

 

 

· Adding all bytes together gives 118h. 

· Drop the Carry Nibble to give you 18h. 

· Get the two's complement of the 18h to get E8h. This is the checksum byte. 

 To Test the Checksum byte simply add it to the original group of bytes. This should give you 200h. 

Drop the carry nibble again giving 00h. Since it is 00h this means the checksum means the bytes were probably not changed. 

	 
	 
	[image: image106.png]




	
	
	

	 
	 
	[image: image107.png]




	 

Error-Correcting Codes 

	Error correcting codes not only detect errors, but also correct them. This is used normally in Satellite communication, where turn-around delay is very high as is the probability of data getting corrupt.

 ECC (Error correcting codes) are used also in memories, networking, Hard disk, CDROM, DVD etc. Normally in networking chips (ASIC), we have 2 Error detection bits and 1 Error correction bit.

	 
	 
	[image: image108.png]




	 Hamming Code

 Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error. It can detect (not correct) two-bits errors and cannot distinguish between 1-bit and 2-bits inconsistencies. It can't - in general - detect 3(or more)-bits errors The idea is that the failed bit position in an n-bit string (which we'll call X) can be represented in binary with log2(n) bits, hence we'll try to get it adding just log2(n) bits.



	  Now  we set each added bit to the parity of a group of bits. We group bits this way: we form a group for every parity bit, where the following relation holds: [image: image109.png]



position(bit) AND position(parity) = position(parity)

(Note that: AND is the bit-wise boolean AND; parity bits are included in the groups; each bit can belong to one or more groups.)

 So bit 1 groups bits 1, 3, 5, 7... while bit 2 groups bits 2, 3, 6, 7, 10... , bit 4 groups bits 4, 5, 6, 7, 12, 13... and so on.

 Thus, by definition, X (the failed bit position defined above) is the sum of the incorrect parity bits positions (0 for no errors).

 

[image: image110.png]



To understand why it is so, let's call Xn the nth bit of X in binary representation. Now consider that each parity bit is tied to a bit of X: parity1 -> X1, parity2 -> X2, parity4 -> X3, parity8 -> X4 and so on - forprogrammers: they are the respective AND masks -. By construction, the failed bit makes fail only the parity bits which correspond to the 1s in X, so each bit of X is 1 if the corresponding parity is wrong and 0 if it is correct.

 

 

[image: image111.png]



Note that the longer the string, the higher the throughput n/m and the lower the probability that no more than one bit fails. So the string to be sent should be broken into blocks whose length depends on the transmision channel quality (the cleaner the channel, the bigger the block). Also, unless it's guaranteed that at most one bit per block fails, a checksum or some other form of data integrity check should be added.

	 
	 
	[image: image112.png]




	 
	[image: image113.png]



	Alphanumeric Codes 

	The binary codes that can be used to represent all the letters of the alphabet, numbers and mathematical symbols, punctuation marks, are known as alphanumeric codes or character codes. These codes enable us to interface the input-output devices like the keyboard, printers, video displays with the computer. 

	 
	 
	[image: image114.png]




	 ASCII Code 

	ASCII stands for American Standard Code for Information Interchange. It has become a world standard alphanumeric code for microcomputers and computers. It is a 7-bit code representing 27 = 128 different characters. These characters represent 26 upper case letters (A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 33 control characters.

 The 7-bit code is divided into two portions, The leftmost 3 bits portion is called zone bits and the 4-bit portion on the right is called numeric bits.

 

 

An 8-bit version of ASCII code is known as USACC-II 8 or ASCII-8. The 8-bit version can represent a maximum of 256 characters. 


	 
	 
	[image: image115.png]




	 
	[image: image116.png]



	EBCDIC Code 

	EBCDIC stands for Extended Binary Coded Decimal Interchange. It is mainly used with large computer systems like mainframes. EBCDIC is an 8-bit code and thus accomodates up to 256 characters. An EBCDIC code is divided into two portions: 4 zone bits (on the left) and 4 numeric bits (on the right). 

	Floating Point Numbers 

	
	
	A real number or floating point number is a number which has both an integer and a fractional part. Examples for real real decimal numbers are 123.45, 0.1234, -0.12345, etc. Examples for real binary numbers are 1100.1100, 0.1001, -1.001, etc. In general, floating point numbers are expressed in exponential notation. 

	 
	 
	[image: image117.png]




	
	
	For example the decimal number 

	
	
	· 30000.0 can be written as 3 x 104. 

· 312.45 can be written as 3.1245 x 102. 

	 
	 
	[image: image118.png]




	
	
	Similarly, the binary number 1010.001 can be written as 1.010001 x 103.

	 
	 
	[image: image119.png]




	
	
	The general form of a number N can be expressed as

	 
	 
	[image: image120.png]




	
	
	N = ± m x b±e.

	 
	 
	[image: image121.png]




	
	
	Where m is mantissa, b is the base of number system and e is the exponent. A floating point number is represented by two parts. The number first part, called mantissa, is a signed fixed point number and the second part, called exponent, specifies the decimal or binary position.

	 
	 
	[image: image122.png]




	 
	 
	[image: image123.png]




	
	
	

	 
	 
	[image: image124.png]




	 
	[image: image125.png]



	Binary Representation of Floating Point Numbers 

	
	
	A floating point binary number is also represented as in the case of decimal numbers. It means that mantissa and exponent are expressed using signed magnitude notation in which one bit is reserved for sign bit.

	 
	 
	[image: image126.png]




	
	
	Consider a 16-bit word used to store the floating point numbers; assume that 9 bits are reserved for mantissa and 7 bits for exponent and also assume that the mantissa part is represented in fraction system. This implies the assumed binary point is at the mantissa sign bit immediate right.

	 
	 
	[image: image127.png]




	
	
	[image: image128.png][Sign bllTAssumed binary point iSign bit

Je—— 9 bits Mantissa ——»}7 bits Exponents—»|






	 
	 
	[image: image129.png]




	 
	[image: image130.png]



	Example 

	
	
	A binary number 1101.01 is represented as

	
	
	Mantissa = 110101 = (1101.01)2 = 0.110101 X 24

	 
	 
	[image: image131.png]




	
	
	Exponent = (4)10

	
	
	Expanding mantissa to 8 bits we get 11010100

	
	
	Binary representation of exponent (4)10 = 000100

	 
	 
	[image: image132.png]




	
	
	The required representation is

	 
	 
	[image: image133.png]




	
	
	[image: image134.png][Sign bit Assumed binary point  — Sign bit
F1o1o1ooiooo1oo

Je—— 9 bits Mantissa ——»}«7 bits Exponents—»|






	Symbolic Logic 

	Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations :

 

 True is represented by the value 1. 

· False is represented by the value 0. 

Variables are represented by letters and can have one of two values, either 0 or 1. Operations are functions of one or more variables.

· AND is represented by X.Y 

· OR is represented by X + Y 

· NOT is represented by X' . Throughout this tutorial the X' form will be used and sometime !X will be used. 

These basic operations can be combined to give expressions.

 

 Example :
 

 X 

· X.Y 

· W.X.Y + Z 

	 

 

[image: image135.png]



 

Precedence 

	As with any other branch of mathematics, these operators have an order of precedence. NOT operations have the highest precedence, followed by AND operations, followed by OR operations. Brackets can be used as with other forms of algebra. e.g.

 

 

[image: image136.png]



X.Y + Z and X.(Y + Z) are not the same function. 

	 
	 
	[image: image137.png]




	 
	[image: image138.png]



	Function Definitions 

	The logic operations given previously are defined as follows :

 

 

[image: image139.png]



Define f(X,Y) to be some function of the variables X and Y. 

 

 

[image: image140.png]



f(X,Y) = X.Y
· 1 if X = 1 and Y = 1 

· 0 Otherwise 

 

 

[image: image141.png]



f(X,Y) = X + Y 

· 1 if X = 1 or Y = 1 

· 0 Otherwise 

 

 

[image: image142.png]



f(X) = X'
· 1 if X = 0 

· 0 Otherwise 

	 
	 
	[image: image143.png]




	 
	[image: image144.png]



	Truth Tables 

	Truth tables are a means of representing the results of a logic function using a table. They are constructed by defining all possible combinations of the inputs to a function, and then calculating the output for each combination in turn. For the three functions we have just defined, the truth tables are as follows.

 

 

[image: image145.png]



AND
X
Y
F(X,Y)
0

0

0

0

1

0

1

0

0

1

1

1

 

 

[image: image146.png]



OR
X
Y
F(X,Y)
0

0

0

0

1

1

1

0

1

1

1

1

 

 

[image: image147.png]



NOT
X
F(X)
0

1

1

0

 

 

[image: image148.png]



Truth tables may contain as many input variables as desired

 

 

[image: image149.png]



F(X,Y,Z) = X.Y + Z
X
Y
Z
F(X,Y,Z)
0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

1



	 

 

	 
	[image: image150.png]




	
	[image: image151.png]



	Boolean Switching Algebras 

	A Boolean Switching Algebra is one which deals only with two-valued variables. Boole's general theory covers algebras which deal with variables which can hold n values. 

	 
	 
	[image: image152.png]




	 
	[image: image153.png]



	Axioms 

	Consider a set S = { 0. 1}
Consider two binary operations, + and . , and one unary operation, -- , that act on these elements. [S, ., +, --, 0, 1] is called a switching algebra that satisfies the following axioms S

	 
	 
	[image: image154.png]




	 
	[image: image155.png]



	Closure 

	 
	 
	[image: image156.png]




	If X [image: image157.png]


S and Y [image: image158.png]


S then X.Y [image: image159.png]


S

If X [image: image160.png]


S and Y [image: image161.png]


S then X+Y [image: image162.png]


S

	 
	 
	[image: image163.png]




	 
	[image: image164.png]



	Identity 

	 

 [image: image165.png]


an identity 0 for + such that X + 0 = X

[image: image166.png]


an identity 1 for . such that X . 1 = X

	 
	 
	[image: image167.png]




	 
	[image: image168.png]



	Commutative Laws 

	 
	 
	[image: image169.png]




	X + Y = Y + X

X . Y = Y . X 

	 
	 
	[image: image170.png]




	 
	[image: image171.png]



	Distributive Laws 

	 
	 
	[image: image172.png]




	X.(Y + Z ) = X.Y + X.Z

X + Y.Z = (X + Y) . (X + Z) 

	 
	 
	[image: image173.png]




	 
	[image: image174.png]



	Complement 

	 
	 
	[image: image175.png]




	
	
	[image: image176.png]


X [image: image177.png]


S [image: image178.png]


a complement X'such that

	
	
	X + X' = 1

	X . X' = 0

The complement X' is unique.

	 
	 
	[image: image179.png]




	
	
	

	 
	 
	[image: image180.png]




	 
	[image: image181.png]



	Theorems 

	 

 

[image: image182.png]


A number of theorems may be proved for switching algebras

	 
	 
	[image: image183.png]




	 
	[image: image184.png]



	Idempotent Law 

	 
	 
	[image: image185.png]




	
	
	X + X = X

	
	
	X . X = X

	 
	 
	[image: image186.png]




	 
	[image: image187.png]



	DeMorgan's Law 

	 
	 
	[image: image188.png]




	(X + Y)' = X' . Y', These can be proved by the use of truth tables.

 

 Proof of (X + Y)' = X' . Y'

	 
	 
	[image: image189.png]




	
	
	X
Y
X+Y
(X+Y)'
0

0

0 

1

0

1

1 

0

1

0

1 

0

1

1

1 

0



	 
	 
	[image: image190.png]




	
	
	X
Y
X'
Y'
X'.Y'
0

0

1 

1 

1

0

1

1 

0 

0

1

0

0 

1 

0

1

1

0 

0 

0



	 
	 
	[image: image191.png]




	
	
	The two truth tables are identical, and so the two expressions are identical.

	 
	 
	[image: image192.png]




	
	
	(X.Y) = X' + Y', These can be proved by the use of truth tables.

	 
	 
	[image: image193.png]




	
	
	Proof of (X.Y) = X' + Y'

	 
	 
	[image: image194.png]




	
	
	X
Y
X.Y
(X.Y)'
0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

0



	 
	 
	[image: image195.png]




	
	
	X
Y
X'
Y'
X'+Y'
0

0

1 

1 

1

0

1

1 

0 

1

1

0

0 

1 

1

1

1

0 

0 

0



	 
	 
	[image: image196.png]




	
	
	Note : DeMorgans Laws are applicable for any number of variables.

	 
	 
	[image: image197.png]




	 
	[image: image198.png]



	Boundedness Law 

	 
	 
	[image: image199.png]




	
	
	X + 1 = 1

	
	
	X . 0 = 0

	 
	 
	[image: image200.png]




	 
	[image: image201.png]



	Absorption Law 

	 
	 
	[image: image202.png]




	
	
	X + (X . Y) = X

	
	
	X . (X + Y ) = X

	 
	 
	[image: image203.png]




	 
	[image: image204.png]



	Elimination Law 

	 
	 
	[image: image205.png]




	
	
	X + (X' . Y) = X + Y

	
	
	X.(X' + Y) = X.Y

	 
	 
	[image: image206.png]




	 
	[image: image207.png]



	Unique Complement theorem 

	 
	 
	[image: image208.png]




	
	
	If X + Y = 1 and X.Y = 0 then X = Y'

	 
	 
	[image: image209.png]




	 
	[image: image210.png]



	Involution theorem 

	 
	 
	[image: image211.png]




	
	
	X'' = X

	
	
	0' = 1

	 
	 
	[image: image212.png]




	 
	[image: image213.png]



	Associative Properties 

	 
	 
	[image: image214.png]




	
	
	X + (Y + Z) = (X + Y) + Z

	
	
	X . ( Y . Z ) = ( X . Y ) . Z

	 
	 
	[image: image215.png]




	 
	[image: image216.png]



	Duality Principle 

	
	
	In Boolean algebras the duality Principle can be is obtained by interchanging AND and OR operators and replacing 0's by 1's and 1's by 0's. Compare the identities on the left side with the identities on the right.

	 
	 
	[image: image217.png]




	
	
	Example

	 
	 
	[image: image218.png]




	
	
	X.Y+Z' = (X'+Y').Z

	 
	 
	[image: image219.png]




	 
	[image: image220.png]



	Consensus theorem 

	 
	 
	[image: image221.png]




	
	
	X.Y + X'.Z + Y.Z = X.Y + X'.Z

	
	
	or dual form as below

	
	
	(X + Y).(X' + Z).(Y + Z) = (X + Y).(X' + Z)

	 
	 
	[image: image222.png]




	
	
	Proof of X.Y + X'.Z + Y.Z = X.Y + X'.Z:

	 
	 
	[image: image223.png]




	
	
	X.Y + X'.Z + Y.Z 
= X.Y + X'.Z
X.Y + X'.Z + (X+X').Y.Z 

= X.Y + X'.Z

X.Y.(1+Z) + X'.Z.(1+Y) 

= X.Y + X'.Z

X.Y + X'.Z 

= X.Y + X'.Z



	 
	 
	[image: image224.png]




	
	
	(X.Y'+Z).(X+Y).Z = X.Z+Y.Z instead of X.Z+Y'.Z

	
	
	X.Y'Z+X.Z+Y.Z

	
	
	(X.Y'+X+Y).Z

	
	
	(X+Y).Z

	
	
	X.Z+Y.Z

	 
	 
	[image: image225.png]




	
	
	The term which is left out is called the consensus term.

	 
	 
	[image: image226.png]




	
	
	Given a pair of terms for which a variable appears in one term, and its complement in the other, then the consensus term is formed by ANDing the original terms together, leaving out the selected variable and its complement.

	 
	 
	[image: image227.png]




	
	
	Example :

	
	
	The consensus of X.Y and X'.Z is Y.Z

	 
	 
	[image: image228.png]




	
	
	The consensus of X.Y.Z and Y'.Z'.W' is (X.Z).(Z.W')

	 
	 
	[image: image229.png]




	 
	
	

	
	
	

	 
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	 
	 
	[image: image230.png]




	
	
	

	Algebraic Manipulation 

	 
	 
	[image: image231.png]




	 
	 
	[image: image232.png]




	 
	[image: image233.png]



	Minterms and Maxterms 

	 
	 
	[image: image234.png]




	
	
	Any boolean expression may be expressed in terms of either minterms or maxterms. To do this we must first define the concept of a literal. A literal is a single variable within a term which may or may not be complemented. For an expression with N variables, minterms and maxterms are defined as follows :

	
	
	· A minterm is the product of N distinct literals where each literal occurs exactly once. 

· A maxterm is the sum of N distinct literals where each literal occurs exactly once. 

	
	
	For a two-variable expression, the minterms and maxterms are as follows 

	 
	 
	[image: image235.png]




	
	
	X
Y
Minterm
Maxterm
0

0

X'.Y'

X+Y

0

1

X'.Y

X+Y'

1

0

X.Y'

X'+Y

1

1

X.Y

X'+Y'



	 
	 
	[image: image236.png]




	
	
	For a three-variable expression, the minterms and maxterms are as follows

	 
	 
	[image: image237.png]




	
	
	X
Y
Z
Minterm 
Maxterm
0

0

0

X'.Y'.Z'

X+Y+Z

0

0

1

X'.Y'.Z 

X+Y+Z'

0

1

0

X'.Y.Z' 

X+Y'+Z

0

1

1

X'.Y.Z 

X+Y'+Z'

1

0

0

X.Y'.Z' 

X'+Y+Z

1

0

1

X.Y'.Z 

X'+Y+Z'

1

1

0

X.Y.Z' 

X'+Y'+Z

1

1

1

X.Y.Z 

X'+Y'+Z' 



	 
	 
	[image: image238.png]




	
	
	This allows us to represent expressions in either Sum of Products or Product of Sums forms

	 
	 
	[image: image239.png]




	 
	[image: image240.png]



	Sum Of Products (SOP) 

	 
	 
	[image: image241.png]




	
	
	The Sum of Products form represents an expression as a sum of minterms. 

	 
	 
	[image: image242.png]




	
	
	F(X, Y, ...) = Sum (ak.mk)

	 
	 
	[image: image243.png]




	
	
	where ak is 0 or 1 and mk is a minterm.

	 
	 
	[image: image244.png]




	
	
	To derive the Sum of Products form from a truth table, OR together all of the minterms which give a value of 1.

	 
	 
	[image: image245.png]




	 
	[image: image246.png]



	Example - SOP 

	 
	 
	[image: image247.png]




	
	
	Consider the truth table 

	 
	 
	[image: image248.png]




	
	
	X
Y
F
Minterm
0

0

0

X'.Y'

0

1

0

X'Y

1

0

1

X.Y'

1

1

1

X.Y



	
	
	Here SOP is f(X.Y) = X.Y' + X.Y

	 
	 
	[image: image249.png]




	 
	[image: image250.png]



	Product Of Sum (POS) 

	 
	 
	[image: image251.png]




	
	
	The Product of Sums form represents an expression as a product of maxterms.

	 
	 
	[image: image252.png]




	
	
	F(X, Y, .......) = Product (bk + Mk), where bk is 0 or 1 and Mk is a maxterm. 

	 
	 
	[image: image253.png]




	
	
	To derive the Product of Sums form from a truth table, AND together all of the maxterms which give a value of 0. 

	 
	 
	[image: image254.png]




	
	
	

	 
	 
	[image: image255.png]




	 
	[image: image256.png]



	Example - POS 

	 
	 
	[image: image257.png]




	
	
	Consider the truth table from the previous example.

	 
	 
	[image: image258.png]




	
	
	X
Y
F
Maxterm
0

0

1

X+Y

0

1

0

X+Y'

1

0

1

X'+Y

1

1

1

X'+Y'



	
	
	Here POS is F(X,Y) = (X+Y')

	 
	 
	[image: image259.png]




	 
	[image: image260.png]



	Exercise 

	 
	 
	[image: image261.png]




	
	
	Give the expression represented by the following truth table in both Sum of Products and Product of Sums forms.

	 
	 
	[image: image262.png]




	
	
	X
Y
Z
F(X,Y,X)
0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

0



	 
	 
	[image: image263.png]




	 
	[image: image264.png]



	Conversion between POS and SOP 

	 
	 
	[image: image265.png]




	
	
	Conversion between the two forms is done by application of DeMorgans Laws.

	 
	 
	[image: image266.png]




	 
	[image: image267.png]



	Simplification 

	
	
	As with any other form of algebra you have encountered, simplification of expressions can be performed with Boolean algebra.

	 
	 
	[image: image268.png]




	 
	[image: image269.png]



	Example 

	 
	 
	[image: image270.png]




	
	
	Show that X.Y.Z' + X'.Y.Z' + Y.Z = Y

	 
	 
	[image: image271.png]




	
	
	X.Y.Z' + X'.Y.Z' + Y.Z = Y.Z' + Y.Z = Y

	 
	 
	[image: image272.png]




	 
	[image: image273.png]



	Example 

	 
	 
	[image: image274.png]




	
	
	Show that (X.Y' + Z).(X + Y).Z = X.Z + Y.Z

	 
	 
	[image: image275.png]




	
	
	(X.Y' + Z).(X + Y).Z 

	
	
	= (X.Y' + Z.X + Y'.Z).Z

	
	
	= X.Y'Z + Z.X + Y'.Z

	
	
	= Z.(X.Y' + X + Y')

	
	
	= Z.(X+Y')

	Logic Gates 

	
	
	A logic gate is an electronic circuit/device which makes the logical decisions. To arrive at this decisions, the most common logic gates used are OR, AND, NOT, NAND, and NOR gates. The NAND and NOR gates are called universal gates. The exclusive-OR gate is another logic gate which can be constructed using AND, OR and NOT gate.

	 
	 
	[image: image276.png]




	
	
	Logic gates have one or more inputs and only one output. The output is active only for certain input combinations. Logic gates are the building blocks of any digital circuit. Logic gates are also called switches. With the advent of integrated circuits, switches have been replaced by TTL (Transistor Transistor Logic) circuits and CMOS circuits. Here I give example circuits on how to construct simples gates. 

	
	
	Symbolic Logic

	
	
	Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations.

	 
	 
	[image: image277.png]




	 
	[image: image278.png]



	Inversion 

	
	
	A small circle on an input or an output indicates inversion. See the NOT, NAND and NOR gates given below for examples. 

	 
	 
	[image: image279.png]




	
	
	[image: image280.png]Presence of small
circle always
www.asic-world.com  denotes inversion






	 
	 
	[image: image281.png]




	 
	[image: image282.png]



	Multiple Input Gates 

	
	
	Given commutative and associative laws, many logic gates can be implemented with more than two inputs, and for reasons of space in circuits, usually multiple input, complex gates are made. You will encounter such gates in real world (maybe you could analyze an ASIC lib to find this).

	 
	 
	[image: image283.png]




	 
	[image: image284.png]



	Gates Types 

	 
	 
	[image: image285.png]




	
	
	· AND 

· OR 

· NOT 

· BUF 

· NAND 

· NOR 

· XOR 

· XNOR 

	 
	 
	[image: image286.png]




	
	
	

	 
	 
	[image: image287.png]




	 
	[image: image288.png]



	AND Gate 

	
	
	The AND gate performs logical multiplication, commonly known as AND function. The AND gate has two or more inputs and single output. The output of AND gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW).

	 
	 
	[image: image289.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate is shown in the figure below.

	 
	 
	[image: image290.png]




	
	
	Symbol

	 
	 
	[image: image291.png]




	
	
	[image: image292.png]




	 
	 
	[image: image293.png]




	
	
	Truth Table

	 
	 
	[image: image294.png]




	
	
	X
Y
F=(X.Y)
0

0

0

0

1

0

1

0

0

1

1

1 



	 
	 
	[image: image295.png]




	
	
	Two input AND gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	 
	 
	[image: image296.png]




	
	
	Circuit

	
	
	[image: image297.png]i asic-workd com





	 
	 
	[image: image298.png]




	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are forward biased and thus both diodes conduct and pull F low.

	 
	 
	[image: image299.png]




	
	
	If X = 0 and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulls F low.

	 
	 
	[image: image300.png]




	
	
	If X = 1 and Y = 0, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulls F low.

	 
	 
	[image: image301.png]




	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus there is no drop in voltage at F. Thus F is HIGH.

	 
	 
	[image: image302.png]




	 
	 
	[image: image303.png]




	 
	[image: image304.png]



	Switch Representation of AND Gate 

	
	
	In the figure below, X and Y are two switches which have been connected in series (or just cascaded) with the load LED and source battery. When both switches are closed, current flows to LED.

	 
	 
	[image: image305.png]




	
	
	[image: image306.png]




	 
	 
	[image: image307.png]




	 
	[image: image308.png]



	Three Input AND gate 

	
	
	Since we have already seen how a AND gate works and I will just list the truth table of a 3 input AND gate. The figure below shows its symbol and truth table.

	 
	 
	[image: image309.png]




	
	
	Circuit

	
	
	[image: image310.png]




	 
	 
	[image: image311.png]




	
	
	Truth Table

	
	
	X
Y
Z
F=X.Y.Z 
0

0

0

0 

0

0

1

0 

0

1

0

0 

0

1

1

0 

1

0

0

0 

1

0

1

0 

1

1

0

0 

1

1

1

1



	 
	 
	[image: image312.png]




	 
	[image: image313.png]



	OR Gate 

	
	
	The OR gate performs logical addition, commonly known as OR function. The OR gate has two or more inputs and single output. The output of OR gate is HIGH only when any one of its inputs are HIGH (i.e. even if one input is HIGH, Output will be HIGH).

	 
	 
	[image: image314.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X+Y. Here plus sign (+) denotes the OR operation. Truth table and symbol of the OR gate is shown in the figure below.

	 
	 
	[image: image315.png]




	
	
	Symbol

	 
	 
	[image: image316.png]




	
	
	[image: image317.png]orld.con:





	 
	 
	[image: image318.png]




	
	
	Truth Table

	 
	 
	[image: image319.png]




	
	
	X
Y
F=(X+Y)
0

0

0

0

1

1

1

0

1

1

1

1 



	 
	 
	[image: image320.png]




	
	
	Two input OR gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	 
	 
	[image: image321.png]




	
	
	Circuit

	
	
	[image: image322.png]world.com





	 
	 
	[image: image323.png]




	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus F is low.

	 
	 
	[image: image324.png]




	
	
	If X = 0 and Y = 1, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulling F to HIGH.

	 
	 
	[image: image325.png]




	
	
	If X = 1 and Y = 0, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulling F to HIGH.

	 
	 
	[image: image326.png]




	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are forward biased and thus both the diodes conduct and thus F is HIGH.

	 
	 
	[image: image327.png]




	 
	[image: image328.png]



	Switch Representation of OR Gate 

	
	
	In the figure, X and Y are two switches which have been connected in parallel, and this is connected in series with the load LED and source battery. When both switches are open, current does not flow to LED, but when any switch is closed then current flows.

	 
	 
	[image: image329.png]




	
	
	[image: image330.png]




	 
	 
	[image: image331.png]




	 
	[image: image332.png]



	Three Input OR gate 

	
	
	Since we have already seen how an OR gate works, I will just list the truth table of a 3-input OR gate. The figure below shows its circuit and truth table.

	 
	 
	[image: image333.png]




	
	
	Circuit

	
	
	[image: image334]

	 
	 
	[image: image335.png]




	
	
	Truth Table

	
	
	X
Y
Z
F=X+Y+Z 
0

0

0

0 

0

0

1

1 

0

1

0

1 

0

1

1

1 

1

0

0

1 

1

0

1

1 

1

1

0

1 

1

1

1

1



	NOT Gate 

	
	
	The NOT gate performs the basic logical function called inversion or complementation. NOT gate is also called inverter. The purpose of this gate is to convert one logic level into the opposite logic level. It has one input and one output. When a HIGH level is applied to an inverter, a LOW level appears on its output and vice versa.

	 
	 
	[image: image336.png]




	
	
	If X is the input, then output F can be represented mathematically as F = X', Here apostrophe (') denotes the NOT (inversion) operation. There are a couple of other ways to represent inversion, F= !X, here ! represents inversion. Truth table and NOT gate symbol is shown in the figure below.

	 
	 
	[image: image337.png]




	
	
	Symbol

	 
	 
	[image: image338.png]




	
	
	[image: image339.png]




	 
	 
	[image: image340.png]




	
	
	Truth Table

	 
	 
	[image: image341.png]




	
	
	X
Y=X'
0

1

1

0



	 
	 
	[image: image342.png]




	
	
	NOT gate using "transistor-resistor" logic is shown in the figure below, where X is the input and F is the output.

	 
	 
	[image: image343.png]




	
	
	Circuit

	 
	 
	[image: image344.png]




	
	
	[image: image345.png]




	 
	 
	[image: image346.png]




	
	
	When X = 1, The transistor input pin 1 is HIGH, this produces the forward bias across the emitter base junction and so the transistor conducts. As the collector current flows, the voltage drop across RL increases and hence F is LOW.

	 
	 
	[image: image347.png]




	
	
	When X = 0, the transistor input pin 2 is LOW: this produces no bias voltage across the transistor base emitter junction. Thus Voltage at F is HIGH.

	 
	 
	[image: image348.png]




	 
	[image: image349.png]



	BUF Gate 

	
	
	Buffer or BUF is also a gate with the exception that it does not perform any logical operation on its input. Buffers just pass input to output. Buffers are used to increase the drive strength or sometime just to introduce delay. We will look at this in detail later.

	 
	 
	[image: image350.png]




	
	
	If X is the input, then output F can be represented mathematically as F = X. Truth table and symbol of the Buffer gate is shown in the figure below.

	 
	 
	[image: image351.png]




	
	
	Symbol

	 
	 
	[image: image352.png]




	
	
	[image: image353.png]




	 
	 
	[image: image354.png]




	
	
	Truth Table

	
	
	X
Y=X
0

0

1

1



	 
	 
	[image: image355.png]




	
	
	

	 
	 
	[image: image356.png]




	 
	[image: image357.png]



	NAND Gate 

	
	
	NAND gate is a cascade of AND gate and NOT gate, as shown in the figure below. It has two or more inputs and only one output. The output of NAND gate is HIGH when any one of its input is LOW (i.e. even if one input is LOW, Output will be HIGH).

	 
	 
	[image: image358.png]




	
	
	NAND From AND and NOT

	 
	 
	[image: image359.png]




	
	
	[image: image360.png]Presence of small

circe always
denoes nversion






	 
	 
	[image: image361.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = (X.Y)', Here dot (.) denotes the AND operation and (') denotes inversion. Truth table and symbol of the N AND gate is shown in the figure below. 

	 
	 
	[image: image362.png]




	
	
	Symbol

	 
	 
	[image: image363.png]




	
	
	[image: image364.png]




	 
	 
	[image: image365.png]




	
	
	Truth Table

	 
	 
	[image: image366.png]




	
	
	X
Y
F=(X.Y)'
0

0

1

0

1

1

1

0

1

1

1

0 



	 
	 
	[image: image367.png]




	 
	[image: image368.png]



	NOR Gate 

	
	
	NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below. It has two or more inputs and only one output. The output of NOR gate is HIGH when any all its inputs are LOW (i.e. even if one input is HIGH, output will be LOW).

	 
	 
	[image: image369.png]




	
	
	Symbol

	 
	 
	[image: image370.png]




	
	
	[image: image371.png]




	 
	 
	[image: image372.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = (X+Y)'; here plus (+) denotes the OR operation and (') denotes inversion. Truth table and symbol of the NOR gate is shown in the figure below. 

	 
	 
	[image: image373.png]




	
	
	Truth Table

	 
	 
	[image: image374.png]




	
	
	X
Y
F=(X+Y)'
0

0

1

0

1

0

1

0

0

1

1

0 



	 
	 
	[image: image375.png]




	 
	[image: image376.png]



	XOR Gate 

	
	
	An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one output. The output of a two-input XOR gate assumes a HIGH state if one and only one input assumes a HIGH state. This is equivalent to saying that the output is HIGH if either input X or input Y is HIGH exclusively, and LOW when both are 1 or 0 simultaneously.

	 
	 
	[image: image377.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X[image: image378.png]


Y, Here [image: image379.png]


denotes the XOR operation. X[image: image380.png]


Y and is equivalent to X.Y' + X'.Y. Truth table and symbol of the XOR gate is shown in the figure below.

	 
	 
	[image: image381.png]




	
	
	XOR From Simple gates

	 
	 
	[image: image382.png]




	
	
	[image: image383.png]v asic-workd com






	 
	 
	[image: image384.png]




	
	
	Symbol

	 
	 
	[image: image385.png]




	
	
	[image: image386.png]




	 
	 
	[image: image387.png]




	
	
	Truth Table

	 
	 
	[image: image388.png]




	
	
	X
Y
F=(X[image: image389.png]


Y)
0

0

0

0

1

1

1

0

1

1

1

0 



	 
	 
	[image: image390.png]




	 
	[image: image391.png]



	XNOR Gate 

	
	
	An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and one output. The output of a two-input XNOR gate assumes a HIGH state if all the inputs assumes same state. This is equivalent to saying that the output is HIGH if both input X and input Y is HIGH exclusively or same as input X and input Y is LOW exclusively, and LOW when both are not same.

	 
	 
	[image: image392.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X[image: image393.png]


Y, Here [image: image394.png]


denotes the XNOR operation. X[image: image395.png]


Y and is equivalent to X.Y + X'.Y'. Truth table and symbol of the XNOR gate is shown in the figure below.

	 
	 
	[image: image396.png]




	
	
	Symbol

	 
	 
	[image: image397.png]




	
	
	[image: image398.png]




	 
	 
	[image: image399.png]




	
	
	Truth Table

	 
	 
	[image: image400.png]




	
	
	X
Y
F=(X[image: image401.png]


Y)'
0

0

1

0

1

0

1

0

0

1

1

1 



	Universal Gates 

	
	
	Universal gates are the ones which can be used for implementing any gate like AND, OR and NOT, or any combination of these basic gates; NAND and NOR gates are universal gates. But there are some rules that need to be followed when implementing NAND or NOR based gates.

	 
	 
	[image: image402.png]




	
	
	To facilitate the conversion to NAND and NOR logic, we have two new graphic symbols for these gates.

	 
	 
	[image: image403.png]




	
	
	NAND Gate

	
	
	[image: image404.png](XYY






	 
	 
	[image: image405.png]




	
	
	NOR Gate

	
	
	[image: image406.png]




	 
	 
	[image: image407.png]




	 
	[image: image408.png]



	Realization of logic function using NAND gates 

	
	
	Any logic function can be implemented using NAND gates. To achieve this, first the logic function has to be written in Sum of Product (SOP) form. Once logic function is converted to SOP, then is very easy to implement using NAND gate. In other words any logic circuit with AND gates in first level and OR gates in second level can be converted into a NAND-NAND gate circuit. 

	 
	 
	[image: image409.png]




	
	
	Consider the following SOP expression

	 
	 
	[image: image410.png]




	
	
	F = W.X.Y + X.Y.Z + Y.Z.W

	 
	 
	[image: image411.png]




	
	
	The above expression can be implemented with three AND gates in first stage and one OR gate in second stage as shown in figure.

	 
	 
	[image: image412.png]




	
	
	[image: image413.png]




	 
	 
	[image: image414.png]




	
	
	If bubbles are introduced at AND gates output and OR gates inputs (the same for NOR gates), the above circuit becomes as shown in figure.

	 
	 
	[image: image415.png]




	
	
	[image: image416.png]




	 
	 
	[image: image417.png]




	
	
	Now replace OR gate with input bubble with the NAND gate. Now we have circuit which is fully implemented with just NAND gates.

	 
	 
	[image: image418.png]




	
	
	[image: image419.png]




	 
	 
	[image: image420.png]




	 
	[image: image421.png]



	Realization of logic gates using NAND gates 

	 
	 
	[image: image422.png]




	 
	 
	[image: image423.png]




	 
	[image: image424.png]



	Implementing an inverter using NAND gate 

	 
	 
	[image: image425.png]




	
	
	Input 
Output
Rule
(X.X)' 

= X'

Idempotent



	 
	 
	[image: image426.png]




	
	
	[image: image427.png]i asic-workd com





	 
	 
	[image: image428.png]




	 
	[image: image429.png]



	Implementing AND using NAND gates 

	 
	 
	[image: image430.png]




	
	
	Input 
Output
Rule
((XY)'(XY)')' 

= ((XY)')' 

Idempotent 

= (XY) 

Involution



	 
	 
	[image: image431.png]




	
	
	[image: image432.png]




	 
	 
	[image: image433.png]




	 
	[image: image434.png]



	Implementing OR using NAND gates 

	 
	 
	[image: image435.png]




	
	
	Input 
Output
Rule
((XX)'(YY)')' 

= (X'Y')' 

Idempotent 

= X''+Y'' 

DeMorgan 

= X+Y 

Involution



	 
	 
	[image: image436.png]




	
	
	[image: image437.png]




	 
	 
	[image: image438.png]




	
	
	

	 
	 
	[image: image439.png]




	 
	[image: image440.png]



	Implementing NOR using NAND gates 

	 
	 
	[image: image441.png]




	
	
	Input 
Output
Rule
((XX)'(YY)')' 

=(X'Y')' 

Idempotent

=X''+Y'' 

DeMorgan

=X+Y 

Involution

=(X+Y)' 

Idempotent



	 
	 
	[image: image442.png]




	
	
	[image: image443.png]




	 
	 
	[image: image444.png]




	 
	[image: image445.png]



	Realization of logic function using NOR gates 

	
	
	Any logic function can be implemented using NOR gates. To achieve this, first the logic function has to be written in Product of Sum (POS) form. Once it is converted to POS, then it's very easy to implement using NOR gate. In other words any logic circuit with OR gates in first level and AND gates in second level can be converted into a NOR-NOR gate circuit. 

	 
	 
	[image: image446.png]




	
	
	Consider the following POS expression

	 
	 
	[image: image447.png]




	
	
	F = (X+Y) . (Y+Z)

	 
	 
	[image: image448.png]




	
	
	The above expression can be implemented with three OR gates in first stage and one AND gate in second stage as shown in figure.

	 
	 
	[image: image449.png]




	
	
	[image: image450.png]




	 
	 
	[image: image451.png]




	
	
	If bubble are introduced at the output of the OR gates and the inputs of AND gate, the above circuit becomes as shown in figure.

	 
	 
	[image: image452.png]




	
	
	[image: image453.png]




	 
	 
	[image: image454.png]




	
	
	Now replace AND gate with input bubble with the NOR gate. Now we have circuit which is fully implemented with just NOR gates.

	 
	 
	[image: image455.png]




	
	
	[image: image456.png]




	 
	 
	[image: image457.png]




	 
	[image: image458.png]



	Realization of logic gates using NOR gates 

	 
	 
	[image: image459.png]




	 
	 
	[image: image460.png]




	 
	[image: image461.png]



	Implementing an inverter using NOR gate 

	 
	 
	[image: image462.png]




	
	
	Input 
Output
Rule
(X+X)' 

= X'

Idempotent



	 
	 
	[image: image463.png]




	
	
	[image: image464.png]




	 
	 
	[image: image465.png]




	 
	[image: image466.png]



	Implementing AND using NOR gates 

	 
	 
	[image: image467.png]




	
	
	Input 
Output
Rule
((X+X)'+(Y+Y)')' 

=(X'+Y')' 

Idempotent

= X''.Y'' 

DeMorgan

= (X.Y) 

Involution



	 
	 
	[image: image468.png]




	
	
	[image: image469.png]




	 
	 
	[image: image470.png]




	 
	[image: image471.png]



	Implementing OR using NOR gates 

	 
	 
	[image: image472.png]




	
	
	Input 
Output
Rule
((X+Y)'+(X+Y)')'

= ((X+Y)')' 

Idempotent

= X+Y 

Involution



	 
	 
	[image: image473.png]




	
	
	[image: image474.png]




	 
	 
	[image: image475.png]




	 
	[image: image476.png]



	Implementing NAND using NOR gates 

	 
	 
	[image: image477.png]




	
	
	Input 
Output
Rule
((X+Y)'+(X+Y)')'

= ((X+Y)')' 

Idempotent

= X+Y 

Involution

= (X+Y)' 

Idempotent



	 
	 
	[image: image478.png]




	
	
	[image: image479.png]




	Introduction 

	
	
	Simplification of Boolean functions is mainly used to reduce the gate count of a design. Less number of gates means less power consumption, sometimes the circuit works faster and also when number of gates is reduced, cost also comes down.

	 
	 
	[image: image480.png]




	
	
	There are many ways to simplify a logic design, some of them are given below. We will be looking at each of these in detail in the next few pages. 

	
	
	· Algebraic Simplification. 

· ->Simplify symbolically using theorems/postulates. 

· ->Requires good skills 

· Karnaugh Maps. 

· ->Diagrammatic technique using 'Venn-like diagram'. 

· ->Limited to no more than 6 variables. 

	
	
	We have already seen how Algebraic Simplification works, so lets concentrate on Karnaugh Maps or simply k-maps.

	 
	 
	[image: image481.png]




	
	
	

	 
	 
	[image: image482.png]




	 

[image: image483.png]


Karnaugh Maps 

	Karnaugh maps provide a systematic method to obtain simplified sum-of-products (SOPs) Boolean expressions. This is a compact way of representing a truth table and is a technique that is used to simplify logic expressions. It is ideally suited for four or less variables, becoming cumbersome for five or more variables. Each square represents either a minterm or maxterm. A K-map of n variables will have 2

squares. For a Boolean expression, product terms are denoted by 1's, while sum terms are denoted by 0's - but 0's are often left blank.

 A K-map consists of a grid of squares, each square representing one canonical minterm combination of the variables or their inverse. The map is arranged so that squares representing minterms which differ by only one variable are adjacent both vertically and horizontally. Therefore XY'Z' would be adjacent to X'Y'Z' and would also adjacent to XY'Z and XYZ'.



	 
	 
	[image: image484.png]




	 

[image: image485.png]


Minimization Technique 



	
	
	· Based on the Unifying Theorem: X + X' = 1 

· The expression to be minimized should generally be in sum-of-product form (If necessary, the conversion process is applied to create the sum-of-product form). 

· The function is mapped onto the K-map by marking a 1 in those squares corresponding to the terms in the expression to be simplified (The other squares may be filled with 0's). 

· Pairs of 1's on the map which are adjacent are combined using the theorem Y(X+X') = Y where Y is any Boolean expression (If two pairs are also adjacent, then these can also be combined using the same theorem). 

· The minimization procedure consists of recognizing those pairs and multiple pairs. 

· ->These are circled indicating reduced terms. 

· Groups which can be circled are those which have two (21) 1's, four (22) 1's, eight (23) 1's, and so on. 

· ->Note that because squares on one edge of the map are considered adjacent to those on the opposite edge, group can be formed with these squares. 

· ->Groups are allowed to overlap. 

· The objective is to cover all the 1's on the map in the fewest number of groups and to create the largest groups to do this. 

· Once all possible groups have been formed, the corresponding terms are identified. 

· ->A group of two 1's eliminates one variable from the original minterm. 

· ->A group of four 1's eliminates two variables from the original minterm. 

· ->A group of eight 1's eliminates three variables from the original minterm, and so on. 

· ->The variables eliminated are those which are different in the original minterms of the group

	2-Variable K-Map 

	
	
	In any K-Map, each square represents a minterm. Adjacent squares always differ by just one literal (So that the unifying theorem may apply: X + X' = 1). For the 2-variable case (e.g.: variables X, Y), the map can be drawn as below. Two variable map is the one which has got only two variables as input.

	 
	 
	[image: image486.png]




	
	
	[image: image487.png]Xy

xv

xr

XY

www.asic-world.com






	 
	 
	[image: image488.png]




	 
	[image: image489.png]



	Equivalent labeling 

	
	
	K-map needs not follow the ordering as shown in the figure above. What this means is that we can change the position of m0, m1, m2, m3 of the above figure as shown in the two figures below.

	 
	 
	[image: image490.png]




	
	
	Position assignment is the same as the default k-maps positions. This is the one which we will be using throughout this tutorial.

	 
	 
	[image: image491.png]




	
	
	[image: image492.png]www.asic-world.com






	 
	 
	[image: image493.png]




	
	
	This figure is with changed position of m0, m1, m2, m3.

	 
	 
	[image: image494.png]




	
	
	[image: image495.png]www.asic-world.com






	 
	 
	[image: image496.png]




	
	
	The K-map for a function is specified by putting a '1' in the square corresponding to a minterm, a '0' otherwise. 

	 
	 
	[image: image497.png]




	 
	[image: image498.png]



	Example- Carry and Sum of a half adder 

	
	
	In this example we have the truth table as input, and we have two output functions. Generally we may have n output functions for m input variables. Since we have two output functions, we need to draw two k-maps (i.e. one for each function). Truth table of 1 bit adder is shown below. Draw the k-map for Carry and Sum as shown below.

	 
	 
	[image: image499.png]




	
	
	X 
Y 
Sum 
Carry
0 

0 

0 

0

0 

1 

1 

0

1 

0 

1 

0

1 

1 

0 

1



	 
	 
	[image: image500.png]




	
	
	[image: image501.png]n(P o
AL {lel:

Carry=X"Y Sum=XY" + XY
www.asic-world.com






	 
	 
	[image: image502.png]




	 
	[image: image503.png]



	Grouping/Circling K-maps 

	
	
	The power of K-maps is in minimizing the terms, K-maps can be minimized with the help of grouping the terms to form single terms. When forming groups of squares, observe/consider the following:

	 
	 
	[image: image504.png]




	
	
	· Every square containing 1 must be considered at least once. 

· A square containing 1 can be included in as many groups as desired. 

· A group must be as large as possible. 

	 
	 
	[image: image505.png]




	
	
	[image: image506.png]4-Cube-
www asic-world.com 4-Cube






	 
	 
	[image: image507.png]




	
	
	· If a square containing 1 cannot be placed in a group, then leave it out to include in final expression. 

· The number of squares in a group must be equal to 2 

· , i.e. 2,4,8,. 

· The map is considered to be folded or spherical, therefore squares at the end of a row or column are treated as adjacent squares. 

· The simplified logic expression obtained from a K-map is not always unique. Groupings can be made in different ways. 

· Before drawing a K-map the logic expression must be in canonical form. 

	 
	 
	[image: image508.png]




	
	
	[image: image509.png]




	 
	 
	[image: image510.png]




	
	
	[image: image511.png]A






	 
	 
	[image: image512.png]




	
	
	In the next few pages we will see some examples on grouping.

	 
	 
	[image: image513.png]




	
	
	

	 
	 
	[image: image514.png]




	 
	[image: image515.png]



	Example of invalid groups 

	 
	 
	[image: image516.png]




	
	
	[image: image517.png]




	 
	 
	[image: image518.png]




	 
	[image: image519.png]



	Example - X'Y+XY 

	
	
	In this example we have the equation as input, and we have one output function. Draw the k-map for function F with marking 1 for X'Y and XY position. Now combine two 1's as shown in figure to form the single term. As you can see X and X' get canceled and only Y remains.

	 
	 
	[image: image520.png]




	
	
	F = Y

	 
	 
	[image: image521.png]




	
	
	[image: image522.png]ﬁ$





	 
	 
	[image: image523.png]




	 
	[image: image524.png]



	Example - X'Y+XY+XY' 

	
	
	In this example we have the equation as input, and we have one output function. Draw the k-map for function F with marking 1 for X'Y, XY and XY position. Now combine two 1's as shown in figure to form the two single terms.

	 
	 
	[image: image525.png]




	
	
	F = X + Y

	 
	 
	[image: image526.png]




	
	
	[image: image527.png][elaly






	 
	 
	[image: image528.png]




	 
	[image: image529.png]



	3-Variable K-Map 

	
	
	There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable K-map. One important thing to note is that K-maps follow the gray code sequence, not the binary one.

	 
	 
	[image: image530.png]




	
	
	[image: image531.png]




	 
	 
	[image: image532.png]




	
	
	Using gray code arrangement ensures that minterms of adjacent cells differ by only ONE literal. (Other arrangements which satisfy this criterion may also be used.)

	 
	 
	[image: image533.png]




	
	
	Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-variable K-map has n adjacent neighbours.

	 
	 
	[image: image534.png]




	
	
	[image: image535.png]X
—r—

[ —
ld.com Y






	 
	 
	[image: image536.png]




	
	
	There is wrap-around in the K-map

	
	
	· X'Y'Z' (m0) is adjacent to X'YZ' (m2) 

· XY'Z' (m4) is adjacent to XYZ' (m6) 

	 
	 
	[image: image537.png]




	
	
	[image: image538.png]




	 
	 
	[image: image539.png]




	 
	[image: image540.png]



	Example 

	
	
	F = XYZ'+XYZ+X'YZ 

	 
	 
	[image: image541.png]




	
	
	[image: image542.png]www.asic-world.comZ





	 
	 
	[image: image543.png]




	
	
	F = XY + YZ

	 
	 
	[image: image544.png]




	 
	[image: image545.png]



	Example 

	
	
	F(X,Y,Z) = [image: image546.png]


(1,3,4,5,6,7) 

	 
	 
	[image: image547.png]




	
	
	[image: image548.png]




	 
	 
	[image: image549.png]




	
	
	F = X + Z

	4-Variable K-Map 

	
	
	There are 16 cells in a 4-variable (W, X, Y, Z); K-map as shown in the figure below.

	 
	 
	[image: image550.png]




	
	
	[image: image551.png]00 01711 10
T3] 2 00 Mo [ M | my
s|7]s my [ mg [ m
P L
13|15 |14 my | mys | m,
NILHLLE

9| 11] 10 10 | my [ my [m,,






	 
	 
	[image: image552.png]




	
	
	There are 2 wrap-around: a horizontal wrap-around and a vertical wrap-around. Every cell thus has 4 neighbours. For example, the cell corresponding to minterm m0 has neighbours m1, m2, m4 and m8.

	 
	 
	[image: image553.png]




	
	
	[image: image554.png]world.com





	 
	 
	[image: image555.png]




	 
	[image: image556.png]



	Example 

	
	
	F(W,X,Y,Z) = (1,5,12,13)

	 
	 
	[image: image557.png]




	
	
	[image: image558.png]




	 
	 
	[image: image559.png]




	
	
	F = WY'Z + W'Y'Z

	 
	 
	[image: image560.png]




	
	
	

	 
	 
	[image: image561.png]




	 
	[image: image562.png]



	Example 

	
	
	F(W,X,Y,Z) = (4, 5, 10, 11, 14, 15)

	 
	 
	[image: image563.png]




	
	
	[image: image564.png]Z www.asic-world.com





	 
	 
	[image: image565.png]




	
	
	F = W'XY' + WY

	 
	 
	[image: image566.png]




	 
	[image: image567.png]



	5-Variable K-Map 

	
	
	There are 32 cells in a 5-variable (V, W, X, Y, Z); K-map as shown in the figure below.

	 
	 
	[image: image568.png]




	
	
	[image: image569.png]V=0

00 01 V=1 00 01 11 10

my [ my [ my | my 00 M6 my7 | myg | Mg

LT L L S 01 {myg [ Moy | myy | My

My | My | M5 | maf o g 1T [ M | 10 | M

my | my [my, [my| 10 |my, [ mys | my; | Myg
[——7

z

www.asic-world.com






	 
	 
	[image: image570.png]




	 
	[image: image571.png]



	Inverse Function 

	 
	 
	[image: image572.png]




	
	
	· The 0's on a K-map indicate when the function is 0. 

· We can minimize the inverse function by grouping the 0's (and any suitable don't cares) instead of the 1's. 

· This technique leads to an expression which is not logically equivalent to that obtained by grouping the 1's (i.e., the inverse of X != X'). 

· Minimizing for the inverse function may be particularly advantageous if there are many more 0's than 1's on the map. 

· We can also apply De Morgan's theorem to obtain a product-of-sum expression. 

	QUINE-McCLUSKEY MINIMIZATION 

	
	
	Quine-McCluskey minimization method uses the same theorem to produce the solution as the K-map method, namely X(Y+Y')=X

	 
	 
	[image: image573.png]




	
	
	

	 
	 
	[image: image574.png]




	 
	[image: image575.png]



	Minimization Technique 

	 
	 
	[image: image576.png]




	· The expression is represented in the canonical SOP form if not already in that form. 

· The function is converted into numeric notation. 

· The numbers are converted into binary form. 

· The minterms are arranged in a column divided into groups. 

· Begin with the minimization procedure. 

· -> Each minterm of one group is compared with each minterm in the group immediately below. 

· -> Each time a number is found in one group which is the same as a number in the group below except for one digit, the numbers pair is ticked and a new composite is created. 

· -> This composite number has the same number of digits as the numbers in the pair except the digit different which is replaced by an "x". 

· The above procedure is repeated on the second column to generate a third column. 

· The next step is to identify the essential prime implicants, which can be done using a prime implicant chart. 

· -> Where a prime implicant covers a minterm, the intersection of the corresponding row and column is marked with a cross. 

· -> Those columns with only one cross identify the essential prime implicants. -> These prime implicants must be in the final answer. 

· -> The single crosses on a column are circled and all the crosses on the same row are also circled, indicating that these crosses are covered by the prime implicants selected. 

· -> Once one cross on a column is circled, all the crosses on that column can be circled since the minterm is now covered. 

· -> If any non-essential prime implicant has all its crosses circled, the prime implicant is redundant and need not be considered further. 

· Next, a selection must be made from the remaining nonessential prime implicants, by considering how the non-circled crosses can be covered best. 

· -> One generally would take those prime implicants which cover the greatest number of crosses on their row. 

· -> If all the crosses in one row also occur on another row which includes further crosses, then the latter is said to dominate the former and can be selected. 

· -> The dominated prime implicant can then be deleted. 

	 
	 
	[image: image577.png]




	 
	[image: image578.png]



	Example 

	Find the minimal sum of products for the Boolean expression, f=[image: image579.png]


(1,2,3,7,8,9,10,11,14,15), using Quine-McCluskey method.

 Firstly these minterms are represented in the binary form as shown in the table below. The above binary representations are grouped into a number of sections in terms of the number of 1's as shown in the table below.

Binary representation of minterms

	 
	 
	[image: image580.png]




	
	
	Minterms
U 
V 
W 
X
1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

14

1

1

1

0

15

1

1

1

1



	 
	 
	[image: image581.png]




	
	
	Group of minterms for different number of 1's

	 
	 
	[image: image582.png]




	
	
	No of 1's
Minterms
U 
V 
W 
X
1

1

0

0

0

1

1

2

0

0

1

0

1

8

1

0

0

0

2

3

0

0

1

1

2

9

1

0

0

1

2

10

1

0

1

0

3

7

0

1

1

1

3

11

1

0

1

1

3

14

1

1

1

0

4

15

1

1

1

1



	 
	 
	[image: image583.png]




	
	
	Any two numbers in these groups which differ from each other by only one variable can be chosen and combined, to get 2-cell combination, as shown in the table below.

	 
	 
	[image: image584.png]




	
	
	2-Cell combinations

	 
	 
	[image: image585.png]




	
	
	Combinations
U
V
W
X
(1,3)

0

0

-

1

(1,9)

-

0

0

1

(2,3)

0

0

1

-

(2,10)

-

0

1

0

(8,9)

1

0

0

-

(8,10)

1

0

-

0

(3,7)

0

-

1

1

(3,11)

-

0

1

1

(9,11)

1

0

-

1

(10,11)

1

0

1 

-

(10,14)

1

-

1

0

(7,15)

-

1

1

1

(11,15)

1

-

1

1

(14,15)

1

1

1

-



	 
	 
	[image: image586.png]




	
	
	From the 2-cell combinations, one variable and dash in the same position can be combined to form 4-cell combinations as shown in the figure below.

	 
	 
	[image: image587.png]




	
	
	4-Cell combinations

	 
	 
	[image: image588.png]




	
	
	Combinations
U
V
W
X
(1,3,9,11)

-

0

-

1

(2,3,10,11)

-

0

1

-

(8,9,10,11)

1

0

-

-

(3,7,11,15)

-

-

1

1

(10,11,14,15)

1

-

1

-



	 
	 
	[image: image589.png]




	
	
	The cells (1,3) and (9,11) form the same 4-cell combination as the cells (1,9) and (3,11). The order in which the cells are placed in a combination does not have any effect. Thus the (1,3,9,11) combination could be written as (1,9,3,11).

	 
	 
	[image: image590.png]




	
	
	From above 4-cell combination table, the prime implicants table can be plotted as shown in table below.

	 
	 
	[image: image591.png]




	
	
	Prime Implicants Table

	 
	 
	[image: image592.png]




	
	
	Prime Implicants
1
2
3
7
8
9
10
11
14
15
(1,3,9,11) 

X

-

X

-

-

X

-

X

-

-

(2,3,10,11) 

-

X

X

-

-

-

X

X

-

-

(8,9,10,11) 

-

-

-

-

X

X

X

X

-

-

(3,7,11,15) 

-

-

-

-

-

-

X

X

X

X

- 

X

X

-

X

X

-

-

-

X

- 



	 
	 
	[image: image593.png]




	
	
	The columns having only one cross mark correspond to essential prime implicants. A yellow cross is used against every essential prime implicant. The prime implicants sum gives the function in its minimal SOP form.

	 
	 
	[image: image594.png]




	
	
	Y = V'X + V'W + UV' + WX + UW

UNIT II-LOGIC GATES & COMBINATIONAL CIRCUITS


	
	
	

	 
	 

	
	
	Logic gates have one or more inputs and only one output. The output is active only for certain input combinations. Logic gates are the building blocks of any digital circuit. Logic gates are also called switches. With the advent of integrated circuits, switches have been replaced by TTL (Transistor Transistor Logic) circuits and CMOS circuits. Here I give example circuits on how to construct simples gates. 

	
	
	Symbolic Logic

	
	
	Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations.

	 
	 
	[image: image595.png]




	 
	[image: image596.png]



	Inversion 

	
	
	A small circle on an input or an output indicates inversion. See the NOT, NAND and NOR gates given below for examples. 

	 
	 
	[image: image597.png]




	
	
	[image: image598.png]Presence of small
circle always
www.asic-world.com  denotes inversion






	 
	 
	[image: image599.png]




	 
	[image: image600.png]



	Multiple Input Gates 

	
	
	

	 
	
	Given commutative and associative laws, many logic gates can be implemented with more than two inputs, and for reasons of space in circuits, usually multiple input, complex gates are made. You will encounter such gates in real world (maybe you could analyze an ASIC lib to find this).

	 
	 
	[image: image601.png]




	 
	 
	[image: image602.png]




	
	
	· AND 

· OR 

· NOT 

· BUF 

· NAND 

· NOR 

· XOR 

· XNOR 

	 
	 
	[image: image603.png]




	
	
	

	 
	 
	[image: image604.png]




	 
	[image: image605.png]



	AND Gate 

	
	
	The AND gate performs logical multiplication, commonly known as AND function. The AND gate has two or more inputs and single output. The output of AND gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW).

	 
	 
	[image: image606.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate is shown in the figure below.

	 
	 
	[image: image607.png]




	
	
	Symbol

	 
	 
	[image: image608.png]




	
	
	[image: image609.png]




	 
	 
	[image: image610.png]




	
	
	Truth Table

	 
	 
	[image: image611.png]




	
	
	X
Y
F=(X.Y)
0

0

0

0

1

0

1

0

0

1

1

1 



	 
	 
	[image: image612.png]




	
	
	Two input AND gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	 
	 
	[image: image613.png]




	
	
	Circuit

	
	
	[image: image614.png]i asic-workd com





	 
	 
	[image: image615.png]




	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are forward biased and thus both diodes conduct and pull F low.

	 
	 
	[image: image616.png]




	
	
	If X = 0 and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulls F low.

	 
	 
	[image: image617.png]




	
	
	If X = 1 and Y = 0, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulls F low.

	 
	 
	[image: image618.png]




	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus there is no drop in voltage at F. Thus F is HIGH.

	 
	 
	[image: image619.png]




	 
	 
	[image: image620.png]




	 
	[image: image621.png]



	Switch Representation of AND Gate 

	
	
	In the figure below, X and Y are two switches which have been connected in series (or just cascaded) with the load LED and source battery. When both switches are closed, current flows to LED.

	 
	 
	[image: image622.png]




	
	
	[image: image623.png]




	 
	 
	[image: image624.png]




	 
	[image: image625.png]



	Three Input AND gate 

	
	
	Since we have already seen how a AND gate works and I will just list the truth table of a 3 input AND gate. The figure below shows its symbol and truth table.

	 
	 
	[image: image626.png]




	
	
	Circuit

	
	
	[image: image627.png]




	 
	 
	[image: image628.png]




	
	
	Truth Table

	
	
	X
Y
Z
F=X.Y.Z 
0

0

0

0 

0

0

1

0 

0

1

0

0 

0

1

1

0 

1

0

0

0 

1

0

1

0 

1

1

0

0 

1

1

1

1



	 
	 
	[image: image629.png]




	 
	[image: image630.png]



	OR Gate 

	
	
	The OR gate performs logical addition, commonly known as OR function. The OR gate has two or more inputs and single output. The output of OR gate is HIGH only when any one of its inputs are HIGH (i.e. even if one input is HIGH, Output will be HIGH).

	 
	 
	[image: image631.png]




	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X+Y. Here plus sign (+) denotes the OR operation. Truth table and symbol of the OR gate is shown in the figure below.

	 
	 
	[image: image632.png]




	
	
	Symbol

	 
	 
	[image: image633.png]




	
	
	[image: image634.png]orld.con:





	 
	 
	[image: image635.png]




	
	
	Truth Table

	 
	 
	[image: image636.png]




	
	
	X
Y
F=(X+Y)
0

0

0

0

1

1

1

0

1

1

1

1 



	 
	 
	[image: image637.png]




	
	
	Two input OR gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	 
	 
	[image: image638.png]




	
	
	Circuit

	
	
	[image: image639.png]world.com





	 
	 
	[image: image640.png]




	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus F is low.

	 
	 
	[image: image641.png]




	
	
	If X = 0 and Y = 1, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulling F to HIGH.

	 
	 
	[image: image642.png]




	
	
	If X = 1 and Y = 0, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulling F to HIGH.

	 
	 
	[image: image643.png]




	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are forward biased and thus both the diodes conduct and thus F is HIGH.

	 
	 
	[image: image644.png]




	 
	[image: image645.png]



	Switch Representation of OR Gate 

	
	
	In the figure, X and Y are two switches which have been connected in parallel, and this is connected in series with the load LED and source battery. When both switches are open, current does not flow to LED, but when any switch is closed then current flows.

	 
	 
	[image: image646.png]




	
	
	[image: image647.png]




	 
	 
	[image: image648.png]




	 
	[image: image649.png]



	Three Input OR gate 

	
	
	Since we have already seen how an OR gate works, I will just list the truth table of a 3-input OR gate. The figure below shows its circuit and truth table.

	 
	 
	[image: image650.png]




	
	
	Circuit

	
	
	[image: image651]

	 
	 
	[image: image652.png]




	
	
	Truth Table

	
	
	X
Y
Z
F=X+Y+Z 
0

0

0

0 

0

0

1

1 

0

1

0

1 

0

1

1

1 

1

0

0

1 

1

0

1

1 

1

1

0

1 

1

1

1

1



	
	
	Y2 = I4 + I5 + I6 +I7

	 
	 
	[image: image653.png]




	
	
	Based on the above equations, we can draw the circuit as shown below

	 
	 
	[image: image654.png]




	
	
	Circuit

	 
	 
	[image: image655.png]




	
	
	[image: image656.png]www.asic-world.com





	 
	 
	[image: image657.png]




	
	
	

	 
	 
	[image: image658.png]




	 
	[image: image659.png]



	Example - Decimal-to-Binary Encoder 

	
	
	Decimal-to-Binary take 10 inputs and provides 4 outputs, thus doing the opposite of what the 4-to-10 decoder does. At any one time, only one input line has a value of 1. The figure below shows the truth table of a Decimal-to-binary encoder.

	 
	 
	[image: image660.png]




	
	
	Truth Table

	 
	 
	[image: image661.png]




	
	
	I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
Y3
Y2
Y1
Y0
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

1

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1



	 
	 
	[image: image662.png]




	
	
	From the above truth table , we can derive the functions Y3, Y2, Y1 and Y0 as given below.

	 
	 
	[image: image663.png]




	
	
	Y3 = I8 + I9

	
	
	Y2 = I4 + I5 + I6 + I7

	
	
	Y1 = I2 + I3 + I6 + I7

	
	
	Y0 = I1 + I3 + I5 + I7 + I9

	 
	 
	[image: image664.png]




	 
	[image: image665.png]



	Priority Encoder 

	
	
	If we look carefully at the Encoder circuits that we got, we see the following limitations. If more then two inputs are active simultaneously, the output is unpredictable or rather it is not what we expect it to be.

	 
	 
	[image: image666.png]




	
	
	This ambiguity is resolved if priority is established so that only one input is encoded, no matter how many inputs are active at a given point of time. 

	 
	 
	[image: image667.png]




	
	
	The priority encoder includes a priority function. The operation of the priority encoder is such that if two or more inputs are active at the same time, the input having the highest priority will take precedence.

	 
	 
	[image: image668.png]




	 
	[image: image669.png]



	Example - 4to3 Priority Encoder 

	
	
	The truth table of a 4-input priority encoder is as shown below. The input D3 has the highest priority, D2 has next highest priority, D0 has the lowest priority. This means output Y2 and Y1 are 0 only when none of the inputs D1, D2, D3 are high and only D0 is high.

	 
	 
	[image: image670.png]




	
	
	A 4 to 3 encoder consists of four inputs and three outputs, truth table and symbols of which is shown below.

	 
	 
	[image: image671.png]




	
	
	Truth Table

	 
	 
	[image: image672.png]




	
	
	D3
D2
D1
D0
Y2
Y1
Y0
0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

x

0

1

0

0

1

x

x

0

1

1

1

x

x

x

1

0

0



	 
	 
	[image: image673.png]




	
	
	Now that we have the truth table, we can draw the Kmaps as shown below.

	 
	 
	[image: image674.png]




	
	
	Kmaps

	 
	 
	[image: image675.png]




	
	
	[image: image676.png]D1D0
00 01 11 10

8






	 
	 
	[image: image677.png]




	
	
	From the Kmap we can draw the circuit as shown below. For Y2, we connect directly to D3.

	 
	 
	[image: image678.png]




	
	
	[image: image679.png]




	 
	 
	[image: image680.png]




	
	
	We can apply the same logic to get higher order priority encoders.

	Multiplexer 

	
	
	A multiplexer (MUX) is a digital switch which connects data from one of n sources to the output. A number of select inputs determine which data source is connected to the output. The block diagram of MUX with n data sources of b bits wide and s bits wide select line is shown in below figure.

	 
	 
	[image: image681.png]




	
	
	[image: image682.png]www.asic-world.com

Enable

Multiplexer

n Data
Sources





	 
	 
	[image: image683.png]




	
	
	MUX acts like a digitally controlled multi-position switch where the binary code applied to the select inputs controls the input source that will be switched on to the output as shown in the figure below. At any given point of time only one input gets selected and is connected to output, based on the select input signal.

	 
	 
	[image: image684.png]




	 
	[image: image685.png]



	Mechanical Equivalent of a Multiplexer 

	
	
	The operation of a multiplexer can be better explained using a mechanical switch as shown in the figure below. This rotary switch can touch any of the inputs, which is connected to the output. As you can see at any given point of time only one input gets transferred to output.

	 
	 
	[image: image686.png]




	
	
	[image: image687.png]D

Outputs

—————®www.asic-world.com






	 
	 
	[image: image688.png]




	 
	[image: image689.png]



	Example - 2x1 MUX 

	
	
	A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input of an AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux is given in the table below.

	 
	 
	[image: image690.png]




	
	
	Symbol

	
	
	[image: image691.png]www.asic-world.com





	 
	 
	[image: image692.png]




	
	
	Truth Table

	
	
	S
Y
0

A

1

B



	 
	 
	[image: image693.png]




	
	
	

	 
	 
	[image: image694.png]




	 
	[image: image695.png]



	Design of a 2:1 Mux 

	
	
	To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is equal to '1'.

	 
	 
	[image: image696.png]




	
	
	Combining the two 1' as shown in figure, we can drive the output y as shown below

	 
	 
	[image: image697.png]




	
	
	Y = A.S' + B.S

	 
	 
	[image: image698.png]




	 
	 
	[image: image699.png]




	
	
	Truth Table

	
	
	B
A
S
Y 
0

0

0

0 

0

0

1

0 

0

1

0

1 

0

1

1

0 

1

0

0

0 

1

0

1

1 

1

1

0

1 

1

1

1

1



	 
	 
	[image: image700.png]




	
	
	Kmap

	
	
	[image: image701.png]AB






	 
	 
	[image: image702.png]




	
	
	Circuit

	
	
	[image: image703.png]www.asic-world.com






	 
	 
	[image: image704.png]




	 
	[image: image705.png]



	Example : 4:1 MUX 

	
	
	A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines I0 to I3 is applied to one input of an AND gate. Selection lines S0 and S1 are decoded to select a particular AND gate. The truth table for the 4:1 mux is given in the table below.

	 
	 
	[image: image706.png]




	
	
	Symbol

	
	
	[image: image707.png]Output

Select www.asic-world.com






	 
	 
	[image: image708.png]




	
	
	Truth Table

	
	
	S1
S0
Y 
0

0

I0 

0

1

I1

1

0

I2 

1

1

I3 



	 
	 
	[image: image709.png]




	
	
	Circuit

	
	
	[image: image710.png]




	 
	 
	[image: image711.png]




	 
	[image: image712.png]



	Larger Multiplexers 

	
	
	Larger multiplexers can be constructed from smaller ones. An 8-to-1 multiplexer can be constructed from smaller multiplexers as shown below.

	 
	 
	[image: image713.png]




	 
	[image: image714.png]



	Example - 8-to-1 multiplexer from Smaller MUX 

	 
	 
	[image: image715.png]




	
	
	Truth Table

	
	
	S2
S1
S0
F 
0

0

0

I0 

0

0

1

I1 

0

1

0

I2 

0

1

1

I3 

1

0

0

I4 

1

0

1

I5 

1

1

0

I6 

1

1

1

I7



	 
	 
	[image: image716.png]




	
	
	Circuit

	
	
	[image: image717.png]S, §, www.asic-world.com





	 
	 
	[image: image718.png]




	 
	[image: image719.png]



	Example - 16-to-1 multiplexer from 4:1 mux 

	 
	 
	[image: image720.png]




	
	
	[image: image721.png]=1






	De-multiplexers 

	
	
	They are digital switches which connect data from one input source to one of n outputs.

	
	
	Usually implemented by using n-to-2n binary decoders where the decoder enable line is used for data input of the de-multiplexer.

	 
	 
	[image: image722.png]




	
	
	The figure below shows a de-multiplexer block diagram which has got s-bits-wide select input, one b-bits-wide data input and n b-bits-wide outputs.

	 
	 
	[image: image723.png]




	
	
	[image: image724.png]Www.asic-world.com






	 
	 
	[image: image725.png]




	
	
	

	 
	 
	[image: image726.png]




	 
	[image: image727.png]



	Mechanical Equivalent of a De-Multiplexer 

	
	
	The operation of a de-multiplexer can be better explained using a mechanical switch as shown in the figure below. This rotary switch can touch any of the outputs, which is connected to the input. As you can see at any given point of time only one output gets connected to input.

	 
	 
	[image: image728.png]




	
	
	[image: image729.png]www.asic-world.com





	 
	 
	[image: image730.png]




	
	
	1-bit 4-output de-multiplexer using a 2x4 binary decoder.

	 
	 
	[image: image731.png]




	
	
	[image: image732.png]Select
2x4

Decoder One of 4

outputs

Data
www.asic-world.com






	 
	 
	[image: image733.png]




	 
	[image: image734.png]



	Example: 1-to-4 De-multiplexer 

	 
	 
	[image: image735.png]




	
	
	Symbol

	 
	 
	[image: image736.png]




	
	
	[image: image737.png]asic-world.com





	 
	 
	[image: image738.png]




	
	
	Truth Table

	
	
	S1
S0
F0
F1
F2
F3
0

0

D

0

0

0

0

1

0

D

0

0

1

0

0

0

D

0

1

1

0

0

0

D



	Boolean Function Implementation 

	
	
	Earlier we had seen that it is possible to implement Boolean functions using decoders. In the same way it is also possible to implement Boolean functions using muxers and de-muxers. 

	 
	 
	[image: image739.png]




	 
	[image: image740.png]



	Implementing Functions Multiplexers 

	
	
	Any n-variable logic function can be implemented using a smaller 2n-1-to-1 multiplexer and a single inverter (e.g 4-to-1 mux to implement 3 variable functions) as follows.

	 
	 
	[image: image741.png]




	
	
	Express function in canonical sum-of-minterms form. Choose n-1 variables as inputs to mux select lines. Construct the truth table for the function, but grouping inputs by selection line values (i.e select lines as most significant inputs).

	
	
	Determine multiplexer input line i values by comparing the remaining input variable and the function F for the corresponding selection lines value i.

	 
	 
	[image: image742.png]




	
	
	We have four possible mux input line i values:

	 
	 
	[image: image743.png]




	
	
	· Connect to 0 if the function is 0 for both values of remaining variable. 

· Connect to 1 if the function is 1 for both values of remaining variable. 

· Connect to remaining variable if function is equal to the remaining variable. 

· Connect to the inverted remaining variable if the function is equal to the remaining variable inverted. 

	 
	 
	[image: image744.png]




	
	
	

	 
	 
	[image: image745.png]




	 
	[image: image746.png]



	Example: 3-variable Function Using 8-to-1 mux 

	
	
	Implement the function F(X,Y,Z) = S(1,3,5,6) using an 8-to-1 mux. Connect the input variables X, Y, Z to mux select lines. Mux data input lines 1, 3, 5, 6 that correspond to the function minterms are connected to 1. The remaining mux data input lines 0, 2, 4, 7 are connected to 0. 

	 
	 
	[image: image747.png]




	
	
	[image: image748.png]X Y Zwww.asicworld.com





	 
	 
	[image: image749.png]




	 
	[image: image750.png]



	Example: 3-variable Function Using 4-to-1 mux 

	
	
	Implement the function F(X,Y,Z) = S(0,1,3,6) using a single 4-to-1 mux and an inverter. We choose the two most significant inputs X, Y as mux select lines.

	
	
	Construct truth table.

	 
	 
	[image: image751.png]




	
	
	Truth Table

	
	
	Select i
X
Y
Z
F
Mux Input i
0

0

0

0

1 

1

0

0

0

1

1 

1

1

0

1

0

0 

Z

1

0

1

1

1 

Z

2

1

0

0

0 

0

2

1

0

1

0 

0

3

1

1

0

1 

Z'

3

1

1

1

0 

Z'



	 
	 
	[image: image752.png]




	
	
	Circuit

	 
	 
	[image: image753.png]




	
	
	[image: image754.png]www.asic-world.com XY






	 
	 
	[image: image755.png]




	
	
	We determine multiplexer input line i values by comparing the remaining input variable Z and the function F for the corresponding selection lines value i

	 
	 
	[image: image756.png]




	
	
	· when XY=00 the function F is 1 (for both Z=0, Z=1) thus mux input0 = 1 

· when XY=01 the function F is Z thus mux input1 = Z 

· when XY=10 the function F is 0 (for both Z=0, Z=1) thus mux input2 = 0 

· when XY=11 the function F is Z' thus mux input3 = Z' 

	 
	 
	[image: image757.png]




	 
	[image: image758.png]



	Example: 2 to 4 Decoder using Demux 

	 
	 
	[image: image759.png]




	
	
	[image: image760.png]S0

Y0 =D.S1".80

s1
DEMUX
1to4
e Enable

www.asic-world.com






	 
	 
	[image: image761.png]




	 
	[image: image762.png]



	Mux-Demux Application Example 

	
	
	This enables sharing a single communication line among a number of devices. At any time, only one source and one destination can use the communication line.

	 
	 
	[image: image763.png]




	
	
	[image: image764.png]Communication

@
2
>
o
7]

Destination

Select _ www.asic-world.com





	Introduction 

	
	
	Arithmetic circuits are the ones which perform arithmetic operations like addition, subtraction, multiplication, division, parity calculation. Most of the time, designing these circuits is the same as designing muxers, encoders and decoders.

	 
	 
	[image: image765.png]




	
	
	In the next few pages we will see few of these circuits in detail.

	 
	 
	[image: image766.png]




	 
	[image: image767.png]



	Adders 

	
	
	Adders are the basic building blocks of all arithmetic circuits; adders add two binary numbers and give out sum and carry as output. Basically we have two types of adders.

	 
	 
	[image: image768.png]




	
	
	· Half Adder. 

· Full Adder. 

	 
	 
	[image: image769.png]




	
	
	

	 
	 
	[image: image770.png]




	 
	[image: image771.png]



	Half Adder 

	
	
	Adding two single-bit binary values X, Y produces a sum S bit and a carry out C-out bit. This operation is called half addition and the circuit to realize it is called a half adder.

	 
	 
	[image: image772.png]




	
	
	Truth Table

	
	
	X
Y
SUM
CARRY 
0

0

0

0

0

1

1

0

1

0

1

0 

1

1

0

1 



	 
	 
	[image: image773.png]




	
	
	Symbol

	 
	 
	[image: image774.png]




	
	
	[image: image775.png]SUM
CARRY






	 
	 
	[image: image776.png]




	
	
	S (X,Y) = [image: image777.png]


(1,2)

	
	
	S = X'Y + XY'

	
	
	S = X[image: image778.png]


Y

	
	
	CARRY(X,Y) = [image: image779.png]


(3)

	
	
	CARRY = XY

	 
	 
	[image: image780.png]




	
	
	Circuit

	 
	 
	[image: image781.png]




	
	
	[image: image782.png]www_asic-world.com

CARRY]

SuMm






	 
	 
	[image: image783.png]




	 
	[image: image784.png]



	Full Adder 

	
	
	Full adder takes a three-bits input. Adding two single-bit binary values X, Y with a carry input bit C-in produces a sum bit S and a carry out C-out bit. 

	 
	 
	[image: image785.png]




	
	
	Truth Table

	
	
	X
Y
Z
SUM
CARRY 
0

0

0

0

0

0

0

1

1

0

0

1

0

1

0 

0

1

1

0

1 

1

0

0

1

0 

1

0

1

0

1 

1

1

0

0

1 

1

1

1

1

1



	 
	 
	[image: image786.png]




	
	
	SUM (X,Y,Z) = [image: image787.png]


(1,2,4,7)

	
	
	CARRY (X,Y,Z) = [image: image788.png]


(3,5,6,7)

	 
	 
	[image: image789.png]




	
	
	Kmap-SUM

	
	
	[image: image790.png]




	 
	 
	[image: image791.png]




	
	
	SUM = X'Y'Z + XY'Z' + X'YZ'

	
	
	SUM = X [image: image792.png]


Y [image: image793.png]


Z

	 
	 
	[image: image794.png]




	
	
	Kmap-CARRY

	
	
	[image: image795.png]9
©|@






	 
	 
	[image: image796.png]




	
	
	CARRY = XY + XZ + YZ

	 
	 
	[image: image797.png]




	 
	[image: image798.png]



	Full Adder using AND-OR 

	
	
	The below implementation shows implementing the full adder with AND-OR gates, instead of using XOR gates. The basis of the circuit below is from the above Kmap. 

	 
	 
	[image: image799.png]




	
	
	Circuit-SUM

	
	
	[image: image800.png]www.asic-world.com





	 
	 
	[image: image801.png]




	
	
	Circuit-CARRY

	
	
	[image: image802.png]




	 
	 
	[image: image803.png]




	 
	[image: image804.png]



	Full Adder using AND-OR 

	 
	 
	[image: image805.png]




	
	
	Circuit-SUM

	
	
	[image: image806.png]




	 
	 
	[image: image807.png]




	
	
	Circuit-CARRY

	
	
	[image: image808.png]




	n-bit Carry Ripple Adder 

	
	
	An n-bit adder used to add two n-bit binary numbers can be built by connecting n full adders in series. Each full adder represents a bit position j (from 0 to n-1).

	 
	 
	[image: image809.png]




	
	
	Each carry out C-out from a full adder at position j is connected to the carry in C-in of the full adder at higher position j+1. The output of a full adder at position j is given by: Sj= Xj [image: image810.png]


Yj [image: image811.png]


Cj

	 
	 
	[image: image812.png]




	
	
	Cj+1 = Xj . Yj + Xj . Cj + Y . Cj

	 
	 
	[image: image813.png]




	
	
	In the expression of the sum Cj must be generated by the full adder at lower position j. The propagation delay in each full adder to produce the carry is equal to two gate delays = 2 D Since the generation of the sum requires the propagation of the carry from the lowest position to the highest position , the total propagation delay of the adder is approximately: 

	 
	 
	[image: image814.png]




	
	
	Total Propagation delay = 2 nD 

	 
	 
	[image: image815.png]




	 
	[image: image816.png]



	4-bit Carry Ripple Adder 

	 
	 
	[image: image817.png]




	
	
	Adds two 4-bit numbers:

	 
	 
	[image: image818.png]




	
	
	X = X3 X2 X1 X0

	
	
	Y = Y3 Y2 Y1 Y0

	 
	 
	[image: image819.png]




	
	
	producing the sum S = S3 S2 S1 S0 , C-out = C4 from the most significant position j=3

	 
	 
	[image: image820.png]




	
	
	Total Propagation delay = 2 nD = 8D or 8 gate delays

	 
	 
	[image: image821.png]




	
	
	[image: image822.png]X3X2X1X0  Y3Y2Y1Y0

C-out  4-bit Adder Cii






	 
	 
	[image: image823.png]




	
	
	

	 
	 
	[image: image824.png]




	 
	[image: image825.png]



	Larger Adder 

	
	
	Example: 16-bit adder using 4 4-bit adders. Adds two 16-bit inputs X (bits X0 to X15), Y (bits Y0 to Y15) producing a 16-bit Sum S (bits S0 to S15) and a carry out C16 from the most significant position. 

	 
	 
	[image: image826.png]




	
	
	[image: image827.png]o

i & it & it & it ]
o A ol bon S el tan L cal o B e €
PAAY s 878180 PAYS PAAYH






	 
	 
	[image: image828.png]




	
	
	Propagation delay for 16-bit adder = 4 x propagation delay of 4-bit adder

	
	
	= 4 x 2 nD = 4 x 8D = 32 D

	
	
	or 32 gate delays

	 
	 
	[image: image829.png]




	 
	[image: image830.png]



	Carry Look-Ahead Adder 

	
	
	The delay generated by an N-bit adder is proportional to the length N of the two numbers X and Y that are added because the carry signals have to propagate from one full-adder to the next. For large values of N, the delay becomes unacceptably large so that a special solution needs to be adopted to accelerate the calculation of the carry bits. This solution involves a "look-ahead carry generator" which is a block that simultaneously calculates all the carry bits involved. Once these bits are available to the rest of the circuit, each individual three-bit addition (Xi+Yi+carry-ini) is implemented by a simple 3-input XOR gate. The design of the look-ahead carry generator involves two Boolean functions named Generate and Propagate. For each input bits pair these functions are defined as:

	 
	 
	[image: image831.png]




	
	
	Gi = Xi . Yi

	
	
	Pi = Xi + Yi

	 
	 
	[image: image832.png]




	
	
	The carry bit c-out(i) generated when adding two bits Xi and Yi is '1' if the corresponding function Gi is '1' or if the c-out(i-1)='1' and the function Pi = '1' simultaneously. In the first case, the carry bit is activated by the local conditions (the values of Xi and Yi). In the second, the carry bit is received from the less significant elementary addition and is propagated further to the more significant elementary addition. Therefore, the carry_out bit corresponding to a pair of bits Xi and Yi is calculated according to the equation:

	 
	 
	[image: image833.png]




	
	
	carry_out(i) = Gi + Pi.carry_in(i-1)

	 
	 
	[image: image834.png]




	
	
	For a four-bit adder the carry-outs are calculated as follows

	 
	 
	[image: image835.png]




	
	
	carry_out0 = G0 + P0 . carry_in0

	
	
	carry_out1 = G1 + P1 . carry_out0 = G1 + P1G0 + P1P0 . carry_in0

	
	
	carry_out2 = G2 + P2G1 + P2P1G0 + P2P1P0 . carry_in0

	
	
	carry_out3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1 . carry_in0

	 
	 
	[image: image836.png]




	 
	 
	[image: image837.png]




	
	
	The set of equations above are implemented by the circuit below and a complete adder with a look-ahead carry generator is next. The input signals need to propagate through a maximum of 4 logic gate in such an adder as opposed to 8 and 12 logic gates in its counterparts illustrated earlier.

	 
	 
	[image: image838.png]




	
	
	[image: image839.png]carry_out, carry_out, carry_out, carry_ouf,






	 
	 
	[image: image840.png]




	
	
	Sums can be calculated from the following equations, where carry_out is taken from the carry calculated in the above circuit.

	 
	 
	[image: image841.png]




	
	
	sum_out0 = X 0[image: image842.png]


 Y0[image: image843.png]


 carry_out0

	
	
	sum_out1 = X 1[image: image844.png]


 Y1[image: image845.png]


 carry_out1

	
	
	sum_out2 = X 2[image: image846.png]


 Y2[image: image847.png]


 carry_out2

	
	
	sum_out3 = X 3[image: image848.png]


 Y3[image: image849.png]


 carry_out3

	 
	 
	[image: image850.png]




	
	
	[image: image851.png]sum_out,
i r)D
D sum_out,
sum_out,
Cary_iny
X,
5
V. sum_out,
Camy_ing,

www.asic-world.com






	 
	 
	[image: image852.png]




	 
	[image: image853.png]



	BCD Adder 

	
	
	BCD addition is the same as binary addition with a bit of variation: whenever a sum is greater than 1001, it is not a valid BCD number, so we add 0110 to it, to do the correction. This will produce a carry, which is added to the next BCD position.

	 
	 
	[image: image854.png]




	
	
	· Add the two 4-bit BCD code inputs. 

· Determine if the sum of this addition is greater than 1001; if yes, then add 0110 to this sum and generate a carry to the next decimal position

	Subtracter 

	
	
	Subtracter circuits take two binary numbers as input and subtract one binary number input from the other binary number input. Similar to adders, it gives out two outputs, difference and borrow (carry-in the case of Adder). There are two types of subtracters.

	 
	 
	[image: image855.png]




	
	
	· Half Subtracter. 

· Full Subtracter. 

	 
	 
	[image: image856.png]




	 
	[image: image857.png]



	Half Subtracter 

	
	
	The half-subtracter is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow). The logic symbol and truth table are shown below.

	 
	 
	[image: image858.png]




	
	
	Symbol

	 
	 
	[image: image859.png]




	
	
	[image: image860.png]www.asic-world.com






	 
	 
	[image: image861.png]




	
	
	Truth Table

	 
	 
	[image: image862.png]




	
	
	X
Y
D
B 
0

0

0

0 

0

1

1

1 

1

0

1

0 

1

1

0

0



	 
	 
	[image: image863.png]




	
	
	From the above table we can draw the Kmap as shown below for "difference" and "borrow". The boolean expression for the difference and Borrow can be written.

	 
	 
	[image: image864.png]




	
	
	[image: image865.png]vorld.com Y Y
— —

ECIpg et
AL Al

Borrow=X".Y Difference=XY" + X'Y





	 
	 
	[image: image866.png]




	
	
	From the equation we can draw the half-subtracter as shown in the figure below.

	 
	 
	[image: image867.png]




	
	
	[image: image868.png]




	 
	 
	[image: image869.png]




	
	
	

	 
	 
	[image: image870.png]




	 
	[image: image871.png]



	Full Subtracter 

	
	
	A full subtracter is a combinational circuit that performs subtraction involving three bits, namely minuend, subtrahend, and borrow-in. The logic symbol and truth table are shown below.

	 
	 
	[image: image872.png]




	
	
	Symbol

	 
	 
	[image: image873.png]




	
	
	[image: image874.png]




	 
	 
	[image: image875.png]




	
	
	Truth Table

	 
	 
	[image: image876.png]




	
	
	X
Y
Bin
D
Bout 
0

0

0

0

0 

0

0

1

1

1 

0

1

0

1

1 

0

1

1

0

1 

1

0

0

1

0 

1

0

1

0

0 

1

1

0

0

0 

1

1

1

1

1



	 
	 
	[image: image877.png]




	
	
	[image: image878.png]




	 
	 
	[image: image879.png]




	
	
	From above table we can draw the Kmap as shown below for "difference" and "borrow". The boolean expression for difference and borrow can be written.

	 
	 
	[image: image880.png]




	
	
	D = X'Y'Bin + X'YBin' + XY'Bin' + XYBin

	
	
	= (X'Y' + XY)Bin + (X'Y + XY')Bin'

	
	
	= (X[image: image881.png]


 Y)'Bin + (X[image: image882.png]


 Y)Bin'

	
	
	= X[image: image883.png]


 Y[image: image884.png]


 Bin

	
	
	Bout = X'.Y + X'.Bin + Y.Bin

	 
	 
	[image: image885.png]




	
	
	From the equation we can draw the half-subtracter as shown in figure below.

	 
	 
	[image: image886.png]




	
	
	[image: image887.png]Difference=X'Y'Bin + X'YBin' + XY'Bin’  Borrow=X'Bin + X'Y + YBin
+ XYBin





	 
	 
	[image: image888.png]




	
	
	From the above expression, we can draw the circuit below. If you look carefully, you will see that a full-subtracter circuit is more or less same as a full-adder with slight modification.

	 
	 
	[image: image889.png]




	
	
	[image: image890.png]




	 
	 
	[image: image891.png]




	 
	[image: image892.png]



	Parallel Binary Subtracter 

	
	
	Parallel binary subtracter can be implemented by cascading several full-subtracters. Implementation and associated problems are those of a parallel binary adder, seen before in parallel binary adder section.

	 
	 
	[image: image893.png]




	
	
	Below is the block level representation of a 4-bit parallel binary subtracter, which subtracts 4-bit Y3Y2Y1Y0 from 4-bit X3X2X1X0. It has 4-bit difference output D3D2D1D0 with borrow output Bout.

	 
	 
	[image: image894.png]




	
	
	[image: image895.png]D1 Do
www.asic-world.com






	 
	 
	[image: image896.png]




	 
	[image: image897.png]



	Serial Binary Subtracter 

	
	
	A serial subtracter can be obtained by converting the serial adder using the 2's complement system. The subtrahend is stored in the Y register and must be 2's complemented before it is added to the minuend stored in the X register.

	 
	 
	[image: image898.png]




	
	
	The circuit for a 4-bit serial subtracter using full-adder is shown in the figure below.

	 
	 
	[image: image899.png]




	
	
	[image: image900.png]el [fo——Fx
qull adder

Cin  Cout

]






	 
	 
	[image: image901.png]




	 
	[image: image902.png]



	Comparators 

	
	
	Comparators can compare either a variable number X (xn xn-1 ... x3 x2 x1) with a predefined constant C (cn cn-1 ... c3 c2 c1) or two variable numbers X and Y. In the first case the implementation reduces to a series of cascaded AND and OR logic gates. If the comparator answers the question 'X>C?' then its hardware implementation is designed according to the following rules:

	 
	 
	[image: image903.png]




	
	
	· The number X has two types of binary figures: bits corresponding to '1' in the predefined constant and bits corresponding to '0' in the predefined constant. 

· The bits of the number X corresponding to '1' are supplied to AND gates 

· The bits corresponding to '0' are supplied to OR logic gates 

· If the least significant bits of the predefined constant are '10' then bit X0 is supplied to the same AND gate as bit X1. 

	 
	 
	[image: image904.png]




	
	
	If the least significant bits of the constant are all '1' then the corresponding bits of the number X are not included in the hardware implementation. All other relations between X and C can be transformed in equivalent ones that use the operator '>' and the NOT logic operator as shown in the table below.

	 
	 
	[image: image905.png]




	
	
	Initial relationship to be tested 
Equivalent relationship to be implemented
X&lt;C 

NOT (X>C-1)

X<= C 

NOT (X>C)

X >= C 

X>C-1



	 
	 
	[image: image906.png]




	
	
	The comparison process of two positive numbers X and Y is performed in a bit-by-bit manner starting with the most significant bit:

	 
	 
	[image: image907.png]




	
	
	· If the most significant bits are Xn='1' and Yn='0' then number X is larger than Y. 

· If Xn='0' and Yn='1' then number X is smaller than Y. 

· If Xn=Yn then no decision can be taken about X and Y based only on these two bits. 

	 
	 
	[image: image908.png]




	
	
	If the most significant bits are equal then the result of the comparison is determined by the less significant bits Xn-1 and Yn-1. If these bits are equal as well, the process continues with the next pair of bits. If all bits are equal then the two numbers are equal.

UNIT III - SEQUENTIAL CIRCUIT


	Introduction 

	
	
	Digital electronics is classified into combinational logic and sequential logic. Combinational logic output depends on the inputs levels, whereas sequential logic output depends on stored levels and also the input levels.

	 
	 
	[image: image909.png]




	
	
	[image: image910.png]Outputs

Combinational
Circuit

Memory Element






	 
	 
	[image: image911.png]




	
	
	The memory elements are devices capable of storing binary info. The binary info stored in the memory elements at any given time defines the state of the sequential circuit. The input and the present state of the memory element determines the output. Memory elements next state is also a function of external inputs and present state. A sequential circuit is specified by a time sequence of inputs, outputs, and internal states.

	 
	 
	[image: image912.png]




	
	
	There are two types of sequential circuits. Their classification depends on the timing of their signals:

	 
	 
	[image: image913.png]




	
	
	· Synchronous sequential circuits 

· Asynchronous sequential circuits 

	 
	 
	[image: image914.png]




	
	
	

	 
	 
	[image: image915.png]




	 
	[image: image916.png]



	Asynchronous sequential circuit 

	
	
	This is a system whose outputs depend upon the order in which its input variables change and can be affected at any instant of time.

	 
	 
	[image: image917.png]




	
	
	Gate-type asynchronous systems are basically combinational circuits with feedback paths. Because of the feedback among logic gates, the system may, at times, become unstable. Consequently they are not often used.

	 
	 
	[image: image918.png]




	
	
	[image: image919.png]




	 
	 
	[image: image920.png]




	 
	[image: image921.png]



	Synchronous sequential circuits 

	
	
	This type of system uses storage elements called flip-flops that are employed to change their binary value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges of the clock depending on the type of memory elements used in the circuit. Synchronization is achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout the system in such a way that the flip-flops are affected only with the arrival of the synchronization pulse. Synchronous sequential circuits that use clock pulses in the inputs are called clocked-sequential circuits. They are stable and their timing can easily be broken down into independent discrete steps, each of which is considered separately.

	 
	 
	[image: image922.png]




	
	
	[image: image923.png]kAL

Rising  Falling Clcck
edges  edges Cycle Time






	 
	 
	[image: image924.png]




	
	
	A clock signal is a periodic square wave that indefinitely switches from 0 to 1 and from 1 to 0 at fixed intervals. Clock cycle time or clock period: the time interval between two consecutive rising or falling edges of the clock.

	 
	 
	[image: image925.png]




	
	
	Clock Frequency = 1 / clock cycle time (measured in cycles per second or Hz) 

	 
	 
	[image: image926.png]




	
	
	Example:Clock cycle time = 10ns clock frequency = 100M

	Concept of Sequential Logic 

	
	
	A sequential circuit as seen in the last page, is combinational logic with some feedback to maintain its current value, like a memory cell. To understand the basics let's consider the basic feedback logic circuit below, which is a simple NOT gate whose output is connected to its input. The effect is that output oscillates between HIGH and LOW (i.e. 1 and 0). Oscillation frequency depends on gate delay and wire delay. Assuming a wire delay of 0 and a gate delay of 10ns, then oscillation frequency would be (on time + off time = 20ns) 50Mhz. 

	 
	 
	[image: image927.png]




	
	
	[image: image928.png]propagation delay
7 T delay * gate delay)

>

I

www.asic-worl






	 
	 
	[image: image929.png]




	
	
	The basic idea of having the feedback is to store the value or hold the value, but in the above circuit, output keeps toggling. We can overcome this problem with the circuit below, which is basically cascading two inverters, so that the feedback is in-phase, thus avoids toggling. The equivalent circuit is the same as having a buffer with its output connected to its input.

	 
	 
	[image: image930.png]




	
	
	[image: image931.png]o>

www.asic-world.com






	 
	 
	[image: image932.png]




	
	
	But there is a problem here too: each gate output value is stable, but what will it be? Or in other words buffer output can not be known. There is no way to tell. If we could know or set the value we would have a simple 1-bit storage/memory element.

	 
	 
	[image: image933.png]




	
	
	The circuit below is the same as the inverters connected back to back with provision to set the state of each gate (NOR gate with both inputs shorted is like a inverter). I am not going to explain the operation, as it is clear from the truth table. S is called set and R is called Reset.

	 
	 
	[image: image934.png]




	
	
	[image: image935.png]




	 
	 
	[image: image936.png]




	
	
	S
R
Q
Q+
0

0

0

0

0

0

1

1

0

1

X

0

1

0

X

1

1

1

X

0



	 
	 
	[image: image937.png]




	
	
	There still seems to be some problem with the above configuration, we can not control when the input should be sampled, in other words there is no enable signal to control when the input is sampled. Normally input enable signals can be of two types.

	 
	 
	[image: image938.png]




	
	
	· Level Sensitive or ( LATCH) 

· Edge Sensitive or (Flip-Flop) 

	 
	 
	[image: image939.png]




	
	
	Level Sensitive: The circuit below is a modification of the above one to have level sensitive enable input. Enable, when LOW, masks the input S and R. When HIGH, presents S and R to the sequential logic input (the above circuit two NOR Gates). Thus Enable, when HIGH, transfers input S and R to the sequential cell transparently, so this kind of sequential circuits are called transparent Latch. The memory element we get is an RS Latch with active high Enable.

	 
	 
	[image: image940.png]




	
	
	[image: image941.png]www.asic-world.com






	 
	 
	[image: image942.png]




	
	
	Edge Sensitive: The circuit below is a cascade of two level sensitive memory elements, with a phase shift in the enable input between first memory element and second memory element. The first RS latch (i.e. the first memory element) will be enabled when CLK input is HIGH and the second RS latch will be enabled when CLK is LOW. The net effect is input RS is moved to Q and Q' when CLK changes state from HIGH to LOW, this HIGH to LOW transition is called falling edge. So the Edge Sensitive element we get is called negative edge RS flip-flop.

	 
	 
	[image: image943.png]




	
	
	[image: image944.png]Q

Q|

o

S Q|

www.asic-world.com






	 
	 
	[image: image945.png]




	
	
	Now that we know the sequential circuits basics, let's look at each of them in detail in accordance to what is taught in colleges. You are always welcome to suggest if this can be written better in any way.

	Latches and Flip-Flops 

	
	
	There are two types types of sequential circuits.

	 
	 
	[image: image946.png]




	
	
	· Asynchronous Circuits. 

· Synchronous Circuits. 

	 
	 
	[image: image947.png]




	
	
	As seen in last section, Latches and Flip-flops are one and the same with a slight variation: Latches have level sensitive control signal input and Flip-flops have edge sensitive control signal input. Flip-flops and latches which use this control signals are called synchronous circuits. So if they don't use clock inputs, then they are called asynchronous circuits.

	 
	 
	[image: image948.png]




	 
	[image: image949.png]



	RS Latch 

	
	
	RS latch have two inputs, S and R. S is called set and R is called reset. The S input is used to produce HIGH on Q ( i.e. store binary 1 in flip-flop). The R input is used to produce LOW on Q (i.e. store binary 0 in flip-flop). Q' is Q complementary output, so it always holds the opposite value of Q. The output of the S-R latch depends on current as well as previous inputs or state, and its state (value stored) can change as soon as its inputs change. The circuit and the truth table of RS latch is shown below. (This circuit is as we saw in the last page, but arranged to look beautiful :-) ).

	 
	 
	[image: image950.png]




	
	
	[image: image951.png]




	 
	 
	[image: image952.png]




	
	
	S
R
Q
Q+
0

0

0

0

0

0

1

1

0

1

X

0

1

0

X

1

1

1

X

0



	 
	 
	[image: image953.png]




	
	
	The operation has to be analyzed with the 4 inputs combinations together with the 2 possible previous states.

	 
	 
	[image: image954.png]




	
	
	· When S = 0 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So it is clear that when both S and R inputs are LOW, the output is retained as before the application of inputs. (i.e. there is no state change). 

· When S = 1 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. So in simple words when S is HIGH and R is LOW, output Q is HIGH. 

· When S = 0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So in simple words when S is LOW and R is HIGH, output Q is LOW. 

· When S = 1 and R =1 : No matter what state Q and Q' are in, application of 1 at input of NOR gate always results in 0 at output of NOR gate, which results in both Q and Q' set to LOW (i.e. Q = Q'). LOW in both the outputs basically is wrong, so this case is invalid. 

	 
	 
	[image: image955.png]




	
	
	The waveform below shows the operation of NOR gates based RS Latch.

	 
	 
	[image: image956.png]




	
	
	[image: image957.png]




	 
	 
	[image: image958.png]




	
	
	It is possible to construct the RS latch using NAND gates (of course as seen in Logic gates section). The only difference is that NAND is NOR gate dual form (Did I say that in Logic gates section?). So in this case the R = 0 and S = 0 case becomes the invalid case. The circuit and Truth table of RS latch using NAND is shown below.

	 
	 
	[image: image959.png]




	
	
	[image: image960.png]




	 
	 
	[image: image961.png]




	
	
	S
R
Q
Q+
1

1

0

0

1

1

1

1

0

1

X

0

1

0

X

1

0

0

X

1



	 
	 
	[image: image962.png]




	
	
	If you look closely, there is no control signal (i.e. no clock and no enable), so this kind of latches or flip-flops are called asynchronous logic elements. Since all the sequential circuits are built around the RS latch, we will concentrate on synchronous circuits and not on asynchronous circuits.

	RS Latch with Clock 

	
	
	We have seen this circuit earlier with two possible input configurations: one with level sensitive input and one with edge sensitive input. The circuit below shows the level sensitive RS latch. Control signal "Enable" E is used to gate the input S and R to the RS Latch. When Enable E is HIGH, both the AND gates act as buffers and thus R and S appears at the RS latch input and it functions like a normal RS latch. When Enable E is LOW, it drives LOW to both inputs of RS latch. As we saw in previous page, when both inputs of a NOR latch are low, values are retained (i.e. the output does not change).

	 
	 
	[image: image963.png]




	
	
	[image: image964.png]w.asic-world.com





	 
	 
	[image: image965.png]




	 
	[image: image966.png]



	Setup and Hold Time 

	
	
	For synchronous flip-flops, we have special requirements for the inputs with respect to clock signal input. They are

	 
	 
	[image: image967.png]




	
	
	· Setup Time: Minimum time period during which data must be stable before the clock makes a valid transition. For example, for a posedge triggered flip-flop, with a setup time of 2 ns, Input Data (i.e. R and S in the case of RS flip-flop) should be stable for at least 2 ns before clock makes transition from 0 to 1. 

· Hold Time: Minimum time period during which data must be stable after the clock has made a valid transition. For example, for a posedge triggered flip-flop, with a hold time of 1 ns. Input Data (i.e. R and S in the case of RS flip-flop) should be stable for at least 1 ns after clock has made transition from 0 to 1. 

	 
	 
	[image: image968.png]




	
	
	If data makes transition within this setup window and before the hold window, then the flip-flop output is not predictable, and flip-flop enters what is known as meta stable state. In this state flip-flop output oscillates between 0 and 1. It takes some time for the flip-flop to settle down. The whole process is called metastability. You could refer to tidbits section to know more information on this topic.

	 
	 
	[image: image969.png]




	
	
	The waveform below shows input S (R is not shown), and CLK and output Q (Q' is not shown) for a SR posedge flip-flop. 

	 
	 
	[image: image970.png]




	
	
	[image: image971.png]> le
setup time -)| hold time

N






	 
	 
	[image: image972.png]




	
	
	

	 
	 
	[image: image973.png]




	 
	[image: image974.png]



	D Latch 

	
	
	The RS latch seen earlier contains ambiguous state; to eliminate this condition we can ensure that S and R are never equal. This is done by connecting S and R together with an inverter. Thus we have D Latch: the same as the RS latch, with the only difference that there is only one input, instead of two (R and S). This input is called D or Data input. D latch is called D transparent latch for the reasons explained earlier. Delay flip-flop or delay latch is another name used. Below is the truth table and circuit of D latch.

	 
	 
	[image: image975.png]




	
	
	In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.

	 
	 
	[image: image976.png]




	
	
	[image: image977.png]o

www.asic-world.com






	 
	 
	[image: image978.png]




	
	
	D
Q
Q+
1

X

1

0

X

0



	
	
	Below is the D latch waveform, which is similar to the RS latch one, but with R removed.

	 
	 
	[image: image979.png]




	
	
	[image: image980.png]www.asic-world.com





	 
	 
	[image: image981.png]




	 
	[image: image982.png]



	JK Latch 

	
	
	The ambiguous state output in the RS latch was eliminated in the D latch by joining the inputs with an inverter. But the D latch has a single input. JK latch is similar to RS latch in that it has 2 inputs J and K as shown figure below. The ambiguous state has been eliminated here: when both inputs are high, output toggles. The only difference we see here is output feedback to inputs, which is not there in the RS latch.

	 
	 
	[image: image983.png]




	
	
	[image: image984.png]




	 
	 
	[image: image985.png]




	
	
	J
K
Q
1

1

0

1

1

1

1

0

1

0

1

0



	 
	 
	[image: image986.png]




	 
	[image: image987.png]



	T Latch 

	
	
	When the two inputs of JK latch are shorted, a T Latch is formed. It is called T latch as, when input is held HIGH, output toggles.

	 
	 
	[image: image988.png]




	
	
	[image: image989.png]




	 
	 
	[image: image990.png]




	
	
	T
Q
Q+
1

0

1

1

1

0

0

1

1

0

0

0



	JK Master Slave Flip-Flop 

	
	
	All sequential circuits that we have seen in the last few pages have a problem (All level sensitive sequential circuits have this problem). Before the enable input changes state from HIGH to LOW (assuming HIGH is ON and LOW is OFF state), if inputs changes, then another state transition occurs for the same enable pulse. This sort of multiple transition problem is called racing.

	 
	 
	[image: image991.png]




	
	
	If we make the sequential element sensitive to edges, instead of levels, we can overcome this problem, as input is evaluated only during enable/clock edges.

	 
	 
	[image: image992.png]




	
	
	[image: image993.png]o

K Q|

www.asic-world.com






	 
	 
	[image: image994.png]




	
	
	In the figure above there are two latches, the first latch on the left is called master latch and the one on the right is called slave latch. Master latch is positively clocked and slave latch is negatively clocked.

	 
	 
	[image: image995.png]




	
	
	[image: image996.png]www.asic-world.com

>_
—






	 
	 
	[image: image997.png]




	 
	[image: image998.png]



	Sequential Circuits Design 

	
	
	We saw in the combinational circuits section how to design a combinational circuit from the given problem. We convert the problem into a truth table, then draw K-map for the truth table, and then finally draw the gate level circuit for the problem. Similarly we have a flow for the sequential circuit design. The steps are given below.

	 
	 
	[image: image999.png]




	
	
	· Draw state diagram. 

· Draw the state table (excitation table) for each output. 

· Draw the K-map for each output. 

· Draw the circuit. 

	 
	 
	[image: image1000.png]




	
	
	Looks like sequential circuit design flow is very much the same as for combinational circuit. 

	 
	 
	[image: image1001.png]




	
	
	

	 
	 
	[image: image1002.png]




	 
	[image: image1003.png]



	State Diagram 

	
	
	The state diagram is constructed using all the states of the sequential circuit in question. It builds up the relationship between various states and also shows how inputs affect the states.

	 
	 
	[image: image1004.png]




	
	
	To ease the following of the tutorial, let's consider designing the 2 bit up counter (Binary counter is one which counts a binary sequence) using the T flip-flop.

	 
	 
	[image: image1005.png]




	
	
	Below is the state diagram of the 2-bit binary counter. 

	 
	 
	[image: image1006.png]




	
	
	[image: image1007.png]www.asic-world.com






	 
	 
	[image: image1008.png]




	 
	[image: image1009.png]



	State Table 

	
	
	The state table is the same as the excitation table of a flip-flop, i.e. what inputs need to be applied to get the required output. In other words this table gives the inputs required to produce the specific outputs. 

	 
	 
	[image: image1010.png]




	
	
	Q1
Q0
Q1+
Q0+
T1
T0
0

0

0

1

0

1

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0

0

1

1



	 
	 
	[image: image1011.png]




	 
	[image: image1012.png]



	K-map 

	
	
	The K-map is the same as the combinational circuits K-map. Only difference: we draw K-map for the inputs i.e. T1 and T0 in the above table. From the table we deduct that we don't need to draw K-map for T0, as it is high for all the state combinations. But for T1 we need to draw the K-map as shown below, using SOP. 

	 
	 
	[image: image1013.png]




	
	
	[image: image1014.png]




	 
	 
	[image: image1015.png]




	 
	[image: image1016.png]



	Circuit 

	
	
	There is nothing special in drawing the circuit, it is the same as any circuit drawing from K-map output. Below is the circuit of 2-bit up counter using the T flip-flop. 

	 
	 
	[image: image1017.png]




	
	
	[image: image1018.png]HicH

a0

at

TFF

TFF





Shift register

In digital circuits a shift register is a group of flip flops set up in a linear fashion which have their inputs and outputs connected together in such a way that the data is shifted down the line when the circuit is activated.

Types of shift register

Shift registers can have a combination of serial and parallel inputs and outputs, including serial-in, parallel-out (SIPO) and parallel-in, serial-out (PISO) types. There are also types that have both serial and parallel input and types with serial and parallel output. There are also bi-directional shift registers which allow you to vary the direction of the shift register. The serial input and outputs of a register can also be connected together to create a circular shift register. One could also create multi-dimensional shift registers, which can perform more complex computation.

Serial-in, serial-out
Destructive readout

These are the simplest kind of shift register. The data string is presented at 'Data In', and is shifted right one stage each time 'Data Advance' is brought high. At each advance, the bit on the far left (i.e. 'Data In') is shifted into the first flip-flop's output. The bit on the far right (i.e. 'Data Out') is shifted out and lost.

0

0

0

0

1

0

0

0

1

1

0

0

0

1

1

0

1

0

1

1

0

1

0

1

0

0

1

0

0

0

0

1

0

0

0

0

The data are stored after each flip-flop on the 'Q' output, so there are four storage 'slots' available in this arrangement, hence it is a 4-Bit Register. To give an idea of the shifting pattern, imagine that the register holds 0000 (so all storage slots are empty). As 'Data In' presents 1,1,0,1,0,0,0,0 (in that order, with a pulse at 'Data Advance' each time. This is called clocking or strobing) to the register, this is the result. The left hand column corresponds to the left-most flip-flop's output pin, and so on.

So the serial output of the entire register is 11010000 (). As you can see if we were to continue to input data, we would get exactly what was put in, but offset by four 'Data Advance' cycles. This arrangement is the hardware equivalent of a queue. Also, at any time, the whole register can be set to zero by bringing the reset (R) pins high.

This arrangement performs destructive readout - each datum is lost once it been shifted out of the right-most bit.

Non-destructive readout

Non-destructive readout can be achieved using the configuration shown below. Another input line is added - the Read/Write Control. When this is high (i.e. write) then the shift register behaves as normal, advancing the input data one place for every clock cycle, and data can be lost from the end of the register. However, when the R/W control is set low (i.e. read), any data shifted out of the register at the right becomes the next input at the left, and is kept in the system. Therefore, as long as the R/W control is set low, no data can be lost from the system.

Serial-in, parallel-out

This configuration allows conversion from serial to parallel format. Data are input serially, as described in the SISO section above. Once the data has been input, it may be either read off at each output simultaneously, or it can be shifted out and replaced.

4-Bit SIPO Shift Register

[image: image1019.png]




Parallel-in, serial-out

This configuration has the data input on lines D1 through D4 in parallel format. To write the data to the register, the Write/Shift control line must be held LOW. To shift the data, the W/S control line is brought HIGH and the registers are clocked. The arrangement now acts as a SISO shift register, with D1 as the Data Input. However, as long as the number of clock cycles is not more than the length of the data-string, the Data Output, Q, will be the parallel data read off in order.

4-Bit PISO Shift Register

[image: image1020.png]jhi T i

D
D
i

:

3

D
D
i

E
"

D
D
i

T
>t
r\





The animation below shows the write/shift sequence, including the internal state of the shift register.

Uses

One of the most common uses of a shift register is to convert between serial and parallel interfaces. This is useful as many circuits work on groups of bits in parallel, but serial interfaces are simpler to construct. Shift registers can be used as simple delay circuits. Several bi-directional shift registers could also be connected in parallel for a hardware implementation of a stack.

Shift registers can be used also as a pulse extenders. Compared to monostable multivibrators the timing has no dependency on component values, however requires external clock and the timing accuracy is limited by a granularity of this clock. In early computers, shift registers were used to handle data processing: two numbers to be added were stored in two shift registers and clocked out into an arithmetic and logic unit (ALU) with the result being fed back to the input of one of the shift registers (the Accumulator) which was one bit longer since binary addition can only result in an answer that is one bit longer.

Many computer languages include instructions to 'shift right' and 'shift left' the data in a register, effectively dividing by two or multiplying by two for each place shifted.

Very large serial-in serial-out shift registers (thousands of bits in size) were used in a similar manner to the earlier delay line memory in some devices built in the early 1970s.

Counter

In digital logic and computing, a counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. In practice, there are two types of counters:

· up counters which increase (increment) in value 

· down counters which decrease (decrement) in value 

Counters in electronics


Toggle flip-flop. Output is not shown. Red=1, blue=0

In electronics, counters can be implemented quite easily using register-type circuits such as the flip-flop, and a wide variety of designs exist, e.g:

· Asynchronous (ripple) counters 

· Synchronous counters 

· Johnson counters 

· Decade counters 

· Up-Down counters 

· Ring counters 

Each is useful for different applications. Usually, counter circuits are digital in nature, and count in binary, or sometimes binary coded decimal. Many types of counter circuit are available as digital building blocks, for example a number of chips in the 4000 series implement different counters.

Asynchronous (ripple) counters


Asynchronous Counter created from JK flip-flops.

The simplest counter circuit is a single D-type flip flop, with its D (data) input fed from its own inverted output. This circuit can store one bit, and hence can count from zero to one before it overflows (starts over from 0). This counter will increment once for every clock cycle and takes two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency of the input clock. If this output is then used as the clock signal for a similarly arranged D flip flop (remembering to invert the output to the input), you will get another 1 bit counter that counts half as fast. Putting them together yields a two bit counter:

cycle

Q1

Q0

(Q1:Q0)dec

0

0

0

0

1

0

1

1

2

1

0

2

3

1

1

3

4

0

0

0

You can continue to add additional flip flops, always inverting the output to its own input, and using the output from the previous flip flop as the clock signal. The result is called a ripple counter, which can count to 2n-1 where n is the number of bits (flip flop stages) in the counter. Ripple counters suffer from unstable outputs as the overflows "ripple" from stage to stage, but they do find frequent application as dividers for clock signals, where the instantaneous count is unimportant, but the division ratio overall is. (To clarify this, a 1-bit counter is exactly equivalent to a divide by two circuit - the output frequency is exactly half that of the input when fed with a regular train of clock pulses).

Synchronous counters
A 4-bit synchronous counter using J-K Flip-flops

Where a stable count value is important across several bits, which is the case in most counter systems, synchronous counters are used. These also use flip-flops, either the D-type or the more complex J-K type, but here, each stage is clocked simultaneously by a common clock signal. Logic gates between each stage of the circuit control data flow from stage to stage so that the desired count behavior is realized. Synchronous counters can be designed to count up or down, or both according to a direction input, and may be presetable via a set of parallel "jam" inputs. Most types of hardware-based counter are of this type.

A simple way of implementing the logic for each bit of an ascending counter (which is what is shown in the image to the right) is for each bit to toggle when all of the less significant bits are at a logic high state. For example, bit 1 toggles when bit 0 is logic high; bit 2 toggles when both bit 1 and bit 0 are logic high; bit 3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.

Johnson counters
A Johnson counter is a special case of shift register, where the output from the last stage is inverted and fed back as input to the first stage. A pattern of bits equal in length to the shift register thus circulates indefinitely. These counters are sometimes called "walking ring" counters, and find specialist applications, including those similar to the decade counter, digital to analogue conversion, etc.

Decade counters
Decade counters are a kind of counter that counts in tens rather than having a binary representation. Each output will go high in turn, starting over after ten outputs have occurred. This type of circuit finds applications in multiplexers and demultiplexers, or wherever a scanning type of behaviour is useful. Similar counters with different numbers of outputs are also common.

Up-Down Counters
It is a combination of up counter and down counter, counting in straight binary sequence. There is an up-down selector. If this value is kept high, counter increments binary value and if the value is low, then counter starts decrementing the count. The Down counters are made by using the complemented output to act as the clock for the next flip-flop in the case of Asynchronous counters. An Up counter is constructed by linking the Q out of the J-K Flip flop and putting it into a Negative Edge Triggered Clock input. A Down Counter is constructed by taking the Q output and putting it into a Positive Edge Triggered input.

Ring Counters
A ring counter is a counter that counts up and when it reaches the last number that is designed to count up to, it will reset itself back to the first number. For example, a ring counter that is designed using 3 JK Flip Flops will count starting from 001 to 010 to 100 and back to 001. It will repeat itself in a 'Ring' shape and thus the name Ring Counter is given.



	Digital Logic Families. 

	
	
	Logic families can be classified broadly according to the technologies they are built with. In earlier days we had vast number of these technologies, as you can see in the list below.

	 
	 
	[image: image1023.png]




	
	
	· DL : Diode Logic. 

· RTL : Resistor Transistor Logic. 

· DTL : Diode Transistor Logic. 

· HTL : High threshold Logic. 

· TTL : Transistor Transistor Logic. 

· I2L : Integrated Injection Logic. 

· ECL : Emitter coupled logic. 

· MOS : Metal Oxide Semiconductor Logic (PMOS and NMOS). 

· CMOS : Complementary Metal Oxide Semiconductor Logic. 

	 
	 
	[image: image1024.png]




	
	
	Among these, only CMOS is most widely used by the ASIC (Chip) designers; we will still try to understand a few of the extinct / less used technologies. More in-depth explanation of CMOS will be covered in the VLSI section.

	 
	 
	[image: image1025.png]




	 
	[image: image1026.png]



	Basic Concepts 

	 
	 
	[image: image1027.png]




	
	
	Before we start looking at the how gates are built using various technologies, we need to understand a few basic concepts. These concepts will go long way i.e. if you become a ASIC designer or Board designer, you may need to know these concepts very well.

	 
	 
	[image: image1028.png]




	
	
	· Fan-in. 

· Fan-out. 

· Noise Margin. 

· Power Dissipation. 

· Gate Delay. 

· Wire Delay. 

· Skew. 

· Voltage Threshold. 

	 
	 
	[image: image1029.png]




	 
	[image: image1030.png]



	Fan-in 

	
	
	Fan-in is the number of inputs a gate has, like a two input AND gate has fan-in of two, a three input NAND gate as a fan-in of three. So a NOT gate always has a fan-in of one. The figure below shows the effect of fan-in on the delay offered by a gate for a CMOS based gate. Normally delay increases following a quadratic function of fan-in.

	 
	 
	[image: image1031.png]




	
	
	[image: image1032.png]2
4
£
=
&
3
3
2
s
)

10

2
www.asic-world.com __fan-in





	 
	 
	[image: image1033.png]




	 
	[image: image1034.png]



	Fan-out 

	
	
	The number of gates that each gate can drive, while providing voltage levels in the guaranteed range, is called the standard load or fan-out. The fan-out really depends on the amount of electric current a gate can source or sink while driving other gates. The effects of loading a logic gate output with more than its rated fan-out has the following effects.

	 
	 
	[image: image1035.png]




	
	
	· In the LOW state the output voltage VOL may increase above VOLmax. 

· In the HIGH state the output voltage VOH may decrease below VOHmin. 

· The operating temperature of the device may increase thereby reducing the reliability of the device and eventually causing the device failure. 

· Output rise and fall times may increase beyond specifications 

· The propagation delay may rise above the specified value. 

	 
	 
	[image: image1036.png]




	
	
	Normally as in the case of fan-in, the delay offered by a gate increases with the increase in fan-out.

	 
	 
	[image: image1037.png]




	
	
	[image: image1038.png]@
g
£
>
k)
o]
e
2
©
)

2
www.asic-world.com fan-out





	 
	 
	[image: image1039.png]




	 
	[image: image1040.png]



	Gate Delay 

	
	
	Gate delay is the delay offered by a gate for the signal appearing at its input, before it reaches the gate output. The figure below shows a NOT gate with a delay of "Delta", where output X' changes only after a delay of "Delta". Gate delay is also known as propagation delay. 

	 
	 
	[image: image1041.png]




	
	
	[image: image1042.png]www.asic-world.com






	 
	 
	[image: image1043.png]




	
	
	Gate delay is not the same for both transitions, i.e. gate delay will be different for low to high transition, compared to high to low transition.

	 
	 
	[image: image1044.png]




	
	
	Low to high transition delay is called turn-on delay and High to low transition delay is called turn-off delay.

	 
	 
	[image: image1045.png]




	 
	[image: image1046.png]



	Wire Delay 

	
	
	Gates are connected together with wires and these wires do delay the signal they carry, these delays become very significant when frequency increases, say when the transistor sizes are sub-micron. Sometimes wire delay is also called flight time (i.e. signal flight time from point A to B). Wire delay is also known as transport delay.

	 
	 
	[image: image1047.png]




	
	
	[image: image1048.png][

wire or
transport delay

wew.asic-world.com





	 
	 
	[image: image1049.png]




	
	
	

	 
	 
	[image: image1050.png]




	 
	[image: image1051.png]



	Skew 

	
	
	The same signal arriving at different parts of the design with different phase is known as skew. Skew normally refers to clock signals. In the figure below, clock signal CLK reaches flip-flop FF0 at time t0, so with respect to the clock phase at the source, it has at FF0 input a clock skew of t0 time units. Normally this is expressed in nanoseconds.

	 
	 
	[image: image1052.png]




	
	
	[image: image1053.png]www.asic-world.com





	 
	 
	[image: image1054.png]




	
	
	The waveform below shows how clock looks at different parts of the design. We will discuss the effects of clock skew later.

	 
	 
	[image: image1055.png]




	
	
	[image: image1056.png]




	 
	 
	[image: image1057.png]




	 
	[image: image1058.png]



	Logic levels 

	
	
	Logic levels are the voltage levels for logic high and logic low.

	 
	 
	[image: image1059.png]




	
	
	· VOHmin : The minimum output voltage in HIGH state (logic '1'). VOHmin is 2.4 V for TTL and 4.9 V for CMOS. 

· VOLmax : The maximum output voltage in LOW state (logic '0'). VOLmax is 0.4 V for TTL and 0.1 V for CMOS. 

· VIHmin : The minimum input voltage guaranteed to be recognised as logic 1. VIHmin is 2 V for TTL and 3.5 V for CMOS. 

· VILmax : The maximum input voltage guaranteed to be recognised as logic 0. VILmax is 0.8 V for TTL and 1.5 V for CMOS. 

	 
	 
	[image: image1060.png]




	 
	[image: image1061.png]



	Current levels 

	 
	 
	[image: image1062.png]




	
	
	· IOHmin: The maximum current the output can source in HIGH state while still maintaining the output voltage above VOHmin. 

· IOLmax : The maximum current the output can sink in LOW state while still maintaining the output voltage below VOLmax. 

· IImax : The maximum current that flows into an input in any state (1µA for CMOS). 

	 
	 
	[image: image1063.png]




	 
	[image: image1064.png]



	Noise Margin 

	
	
	Gate circuits are constructed to sustain variations in input and output voltage levels. Variations are usually the result of several different factors. 

	 
	 
	[image: image1065.png]




	
	
	· Batteries lose their full potential, causing the supply voltage to drop 

· High operating temperatures may cause a drift in transistor voltage and current characteristics 

· Spurious pulses may be introduced on signal lines by normal surges of current in neighbouring supply lines. 

	 
	 
	[image: image1066.png]




	
	
	All these undesirable voltage variations that are superimposed on normal operating voltage levels are called noise. All gates are designed to tolerate a certain amount of noise on their input and output ports. The maximum noise voltage level that is tolerated by a gate is called noise margin. It derives from I/P-O/P voltage characteristic, measured under different operating conditions. It's normally supplied from manufacturer in the gate documentation.

	 
	 
	[image: image1067.png]




	
	
	· LNM (Low noise margin): The largest noise amplitude that is guaranteed not to change the output voltage level when superimposed on the input voltage of the logic gate (when this voltage is in the LOW interval). LNM=VILmax-VOLmax. 

· HNM (High noise margin): The largest noise amplitude that is guaranteed not to change the output voltage level if superimposed on the input voltage of the logic gate (when this voltage is in the HIGH interval). HNM=VOHmin-VIHmin 

	 
	 
	[image: image1068.png]




	 
	[image: image1069.png]



	tr (Rise time) 

	
	
	The time required for the output voltage to increase from VILmax to VIHmin.

	 
	 
	[image: image1070.png]




	 
	[image: image1071.png]



	tf (Fall time) 

	
	
	The time required for the output voltage to decrease from VIHmin to VILmax.

	 
	 
	[image: image1072.png]




	 
	[image: image1073.png]



	tp (Propagation delay) 

	
	
	The time between the logic transition on an input and the corresponding logic transition on the output of the logic gate. The propagation delay is measured at midpoints.

	 
	 
	[image: image1074.png]




	 
	[image: image1075.png]



	Power Dissipation. 

	
	
	Each gate is connected to a power supply VCC (VDD in the case of CMOS). It draws a certain amount of current during its operation. Since each gate can be in a High, Transition or Low state, there are three different currents drawn from power supply.

	 
	 
	[image: image1076.png]




	
	
	· ICCH: Current drawn during HIGH state. 

· ICCT: Current drawn during HIGH to LOW, LOW to HIGH transition. 

· ICCL: Current drawn during LOW state. 

	 
	 
	[image: image1077.png]




	
	
	For TTL, ICCT the transition current is negligible, in comparison to ICCH and ICCL. If we assume that ICCH and ICCL are equal then,

	 
	 
	[image: image1078.png]




	
	
	Average Power Dissipation = Vcc * (ICCH + ICCL)/2

	 
	 
	[image: image1079.png]




	
	
	For CMOS, ICCH and ICCL current is negligible, in comparison to ICCT. So the Average power dissipation is calculated as below.

	 
	 
	[image: image1080.png]




	
	
	Average Power Dissipation = Vcc * ICCT.

	 
	 
	[image: image1081.png]




	
	
	So for TTL like logics family, power dissipation does not depend on frequency of operation, and for CMOS the power dissipation depends on the operation frequency.

	 
	 
	[image: image1082.png]




	
	
	Power Dissipation is an important metric for two reasons. The amount of current and power available in a battery is nearly constant. Power dissipation of a circuit or system defines battery life: the greater the power dissipation, the shorter the battery life. Power dissipation is proportional to the heat generated by the chip or system; excessive heat dissipation may increase operating temperature and cause gate circuitry to drift out of its normal operating range; will cause gates to generate improper output values. Thus power dissipation of any gate implementation must be kept as low as possible.

	 
	 
	[image: image1083.png]




	
	
	Moreover, power dissipation can be classified into Static power dissipation and Dynamic power dissipation.

	 
	 
	[image: image1084.png]




	
	
	· Ps (Static Power Dissipation): Power consumed when the output or input are not changing or rather when clock is turned off. Normally static power dissipation is caused by leakage current. (As we reduce the transistor size, i.e. below 90nm, leakage current could be as high as 40% of total power dissipation). 

· Pd (Dynamic Power Dissipation): Power consumed during output and input transitions. So we can say Pd is the actual power consumed i.e. the power consumed by transistors + leakage current. 

	 
	 
	[image: image1085.png]




	
	
	Thus

	 
	 
	[image: image1086.png]




	
	
	Total power dissipation = static power dissipation + dynamic power dissipation.

	 
	 
	

	Diode Logic 

	
	
	In DL (diode logic), all the logic is implemented using diodes and resistors. One basic thing about the diode, is that diode needs to be forward biased to conduct. Below is the example of a few DL logic circuits.

	 
	 
	[image: image1087.png]




	
	
	[image: image1088.png]v

www.asic-world.com






	 
	 
	[image: image1089.png]




	
	
	When no input is connected or driven, output Z is low, due to resistor R1. When high is applied to either X or Y, or both X and Y are driven high, the corresponding diode get forward biased and thus conducts. When any diode conducts, output Z goes high.

	 
	 
	[image: image1090.png]




	
	
	Points to Ponder

	
	
	· Diode Logic suffers from voltage degradation from one stage to the next. 

· Diode Logic only permits OR and AND functions. 

· Diode Logic is used extensively but not in integrated circuits. 

	 
	 
	[image: image1091.png]




	 
	[image: image1092.png]



	Resistor Transistor Logic 

	
	
	In RTL (resistor transistor logic), all the logic are implemented using resistors and transistors. One basic thing about the transistor (NPN), is that HIGH at input causes output to be LOW (i.e. like a inverter). Below is the example of a few RTL logic circuits.

	 
	 
	[image: image1093.png]




	
	
	[image: image1094.png]www_asic-

orld.com

+VCC

Z= (X +Y)






	 
	 
	[image: image1095.png]




	
	
	A basic circuit of an RTL NOR gate consists of two transistors Q1 and Q2, connected as shown in the figure above. When either input X or Y is driven HIGH, the corresponding transistor goes to saturation and output Z is pulled to LOW.

	 
	 
	[image: image1096.png]




	
	
	

	 
	 
	[image: image1097.png]




	 
	[image: image1098.png]



	Diode Transistor Logic 

	 
	 
	[image: image1099.png]




	
	
	In DTL (Diode transistor logic), all the logic is implemented using diodes and transistors. A basic circuit in the DTL logic family is as shown in the figure below. Each input is associated with one diode. The diodes and the 4.7K resistor form an AND gate. If input X, Y or Z is low, the corresponding diode conducts current, through the 4.7K resistor. Thus there is no current through the diodes connected in series to transistor base . Hence the transistor does not conduct, thus remains in cut-off, and output out is High.

	 
	 
	[image: image1100.png]




	
	
	If all the inputs X, Y, Z are driven high, the diodes in series conduct, driving the transistor into saturation. Thus output out is Low. 

	 
	 
	[image: image1101.png]




	
	
	[image: image1102.png]




	 
	 
	[image: image1103.png]




	 
	[image: image1104.png]



	Transistor Transistor Logic 

	
	
	In Transistor Transistor logic or just TTL, logic gates are built only around transistors. TTL was developed in 1965. Through the years basic TTL has been improved to meet performance requirements. There are many versions or families of TTL.

	 
	 
	[image: image1105.png]




	
	
	· Standard TTL. 

· High Speed TTL 

· Low Power TTL. 

· Schhottky TTL. 

	 
	 
	[image: image1106.png]




	
	
	Here we will discuss only basic TTL as of now; maybe in the future I will add more details about other TTL versions. As such all TTL families have three configurations for outputs.

	 
	 
	[image: image1107.png]




	
	
	· Totem - Pole output. 

· Open Collector Output. 

· Tristate Output. 

	 
	 
	[image: image1108.png]




	
	
	Before we discuss the output stage let's look at the input stage, which is used with almost all versions of TTL. This consists of an input transistor and a phase splitter transistor. Input stage consists of a multi emitter transistor as shown in the figure below. When any input is driven low, the emitter base junction is forward biased and input transistor conducts. This in turn drives the phase splitter transistor into cut-off.

	 
	 
	[image: image1109.png]




	
	
	[image: image1110.png]




	 
	 
	[image: image1111.png]




	 
	[image: image1112.png]



	Totem - Pole Output 

	Below is the circuit of a totem-pole NAND gate, which has got three stages.

 

 

[image: image1113.png]



· Input Stage 

· Phase Splitter Stage 

· Output Stage 

 

 

[image: image1114.png]



Input stage and Phase splitter stage have already been discussed. Output stage is called Totem-Pole because transistor Q3 sits upon Q4.

 

 

[image: image1115.png]



Q2 provides complementary voltages for the output transistors Q3 and Q4, which stack one above the other in such a way that while one of these conducts, the other is in cut-off.

 

 

[image: image1116.png]



Q4 is called pull-down transistor, as it pulls the output voltage down, when it saturates and the other is in cut-off (i.e. Q3 is in cut-off). Q3 is called pull-up transistor, as it pulls the output voltage up, when it saturates and the other is in cut-off (i.e. Q4 is in cut-off).

 

 

[image: image1117.png]



Diodes in input are protection diodes which conduct when there is large negative voltage at input, shorting it to the ground.

 

 

[image: image1118.png]




	
	
	[image: image1119.png][ ——






	 
	 
	[image: image1120.png]




	 
	[image: image1121.png]



	Tristate Output. 

	Normally when we have to implement shared bus systems inside an ASIC or externally to the chip, we have two options: either to use a MUX/DEMUX based system or to use a tri-state base bus system.

 

 

[image: image1122.png]



In the latter, when logic is not driving its output, it does not drive LOW neither HIGH, which means that logic output is floating. Well, one may ask, why not just use an open collector for shared bus systems? The problem is that open collectors are not so good for implementing wire-ANDs.

	 

 

[image: image1123.png]



The circuit below is a tri-state NAND gate; when Enable En is HIGH, it works like any other NAND gate. But when Enable En is driven LOW, Q1 Conducts, and the diode connecting Q1 emitter and Q2 collector, conducts driving Q3 into cut-off. Since Q2 is not conducting, Q4 is also at cut-off. When both pull-up and pull-down transistors are not conducting, output Z is in high-impedance state. 

 

 

[image: image1124.png]




	
	
	[image: image1125.png][ ——






	Integrated Injection Logic 

	 
	 
	[image: image1126.png]




	
	
	TODO

	 
	 
	[image: image1127.png]




	
	
	

	 
	 
	[image: image1128.png]




	 
	[image: image1129.png]



	Emitter coupled logic 

	Emitter coupled logic (ECL) is a non saturated logic, which means that transistors are prevented from going into deep saturation, thus eliminating storage delays. Preventing the transistors from going into saturation is accomplished by using logic levels whose values are so close to each other that a transistor is not driven into saturation when its input switches from low to high. In other words, the transistor is switched on, but not completely on. This logic family is faster than TTL.

 

 

[image: image1130.png]



Voltage level for high is -0.9 Volts and for low is -1.7V; thus biggest problem with ECL is a poor noise margin.

 

 

[image: image1131.png]



A typical ECL OR gate is shown below. When any input is HIGH (-0.9v), its connected transistor will conduct, and hence will make Q3 off, which in turn will make Q4 output HIGH.

 

 

[image: image1132.png]



When both inputs are LOW (-1.7v), their connected transistors will not conduct, making Q3 on, which in turn will make Q4 output LOW.

	 
	 
	[image: image1133.png]




	
	
	[image: image1134.png]




	 
	 
	[image: image1135.png]




	 
	[image: image1136.png]



	Metal Oxide Semiconductor Logic 

	MOS or Metal Oxide Semiconductor logic uses nmos and pmos to implement logic gates. One needs to know the operation of FET and MOS transistors to understand the operation of MOS logic circuits.

 

 

[image: image1137.png]



The basic NMOS inverter is shown below: when input is LOW, NMOS transistor does not conduct, and thus output is HIGH. But when input is HIGH, NMOS transistor conducts and thus output is LOW. 

	 
	 
	[image: image1138.png]




	
	
	[image: image1139.png]L

www.asic-world.com






	 
	 
	[image: image1140.png]




	Normally it is difficult to fabricate resistors inside the chips, so the resistor is replaced with an NMOS gate as shown below. This new NMOS transistor acts as resistor.

	 
	 
	[image: image1141.png]




	
	
	[image: image1142.png]www.asic-world.com






	 
	 
	[image: image1143.png]




	 
	[image: image1144.png]



	Complementary Metal Oxide Semiconductor Logic 

	CMOS or Complementary Metal Oxide Semiconductor logic is built using both NMOS and PMOS. Below is the basic CMOS inverter circuit, which follows these rules:

· NMOS conducts when its input is HIGH. 

· PMOS conducts when its input is LOW. 

So when input is HIGH, NMOS conducts, and thus output is LOW; when input is LOW PMOS conducts and thus output is HIGH. 

	 
	 
	[image: image1145.png]




	
	
	[image: image1146.png]www.asic-world.com






	
	
	





UNIT V.MEMORY
Semiconductor memories are classified in different ways. A distinction is made between read-only (ROM) and read-write (RWM) memories. The contents RWMs can be changed in a short time for a virtually unlimited number of times and contents of ROMs are mostly useful for frequent reading and occasional writing. Since RWM memories use active circuitry
 (transistors) to store the information, they belong to the class of called volatile memories. This is because the data would be lost when the supply voltage is turned off. Read-only memories, on the other hand, encode information by the presence or 
absence of devices. Their data cannot be modified and they belong to the class of nonvolatile memories. That means the stored data is lost by the disconnection of supply voltage. 

Table 1 : Classification Semiconductor Memories 
	RWM 
	NVRWM 
	ROM 

	Random Access 
	Non Random Access 
	
	

	SRAM 

DRAM 
	FIFO 

Shift Register 
	EPROM 

E2PROM 

FLASH 
	Mask-programmed ROM 

Programmable ROM 


Static Random Access Memory (SRAM) 

A single SRAM memory cell is shown in Fig. 5.  Two NMOS and two PMOS transistors (M1 to M4) forms the simple latch to store the data and two pass NMOS transistors (M5 and M6) are controlled by Word Line to pass Bit Line and [image: image1147.png]Bit Line



into the cell. 

A Write operation is performed by first charging the Bit Line and [image: image1148.png]Bit Line



with values that are desired to be stored in the memory cell. Setting the Word Line high performs the actual write operation, and the new data is latched into the circuit. 

A Read operation is initiated by pre-charging both Bit Line and [image: image1149.png]Bit Line



to logic 1. 
Word Line is set high to close NMOS pass transistors to put the contents stored in the cell on the Bit Line and [image: image1150.png]Bit Line



. 

Transistors M1 to M4 constitute the latch and are constantly toggling back and forth. During these switching the power consumption in CMOS circuits takes place and therefore, the sizes of these transistors are kept as small as possible. NMOS transistors are basically switches opening and closing access to the SRAM cell. To minimize the propagation delay caused by these transistors their sizes are kept relatively larger. 

Dynamic Random Access Memory (DRAM) 
DRAM stores each bit in a storage cell consisting of a capacitor and a transistor. Capacitors tend to lose their charge rather quickly; thus, the need for recharging. The presence or absence of charge in the capacitor determines whether the cell contains a '1' or a '0'. The Read operation begins by precharging the bit line to an intermediate value, [image: image1151.png]


. The word line is raised to a high potential and the charge stored on capacitor is shared with [image: image1152.png]


that on the bit line. The change in the bit line voltage is given by the change on the bit line capacitor when the charge stored on capacitor C is shared with the bit line. 

Based on the access pattern, RWMs are classified as random access class and serial memories. FIFO (first-in-first-out) is an example for serial memories. Most memories belong to the random access class, which means memory locations can be read or written in random order. One would expect memories of this class to be called RAM (random access memory); nevertheless for historic reasons, RAM has been reserved for random access RWM memories. That means though most ROM units also provide random access, but the acronym RAM should not be used for them. 

VOLATILE MEMORIES 

Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) are volatile memories. SRAM is used as a cache memory in computers since it offers the fastest write/read (~8ns) speed among all memories. Hardware design of a single SRAM cell consists of 6 transistors. A DRAM cell consists of one transistor and one capacitor and it is based on the charge stored in a capacitor. It is superior to SRAM because of its low cost per bit storage; nevertheless it is slower (`50ns). In DRAM, the stored charge in the capacitor can be maintained only for few milli-seconds and therefore, an extra hardware circuit is needed to periodically refresh the data periodically. 

NON-VOLATILE MEMORIES 
Based on the programmability of the devices non-volatile memories are categorized as follows. Writing data into ROMs is possible only at the time of manufacturing the devices and used only for reading the data stored. Even though these devices are less in cost the constraint that they are to be programmed at the time of manufacturing is an inconvenience. PROM devices are one time programmable ROM. At the time of device manufacturing every cell is stored with "1" and can be programmed by customer once. But, single write phase makes them unattractive. For instance, a single error in the programming process or application makes the device unusable. 

EPROM is Erasable PROM. Multiple times programming feature is added in EPROM. In this case, first whole memory is to be erased by shining ultraviolet light. The erase process is slow and can take from seconds to several minutes, depending on the intensity of the UV source. Programming takes several (5-10) [image: image1153.png]


/word. EPROM cell is extremely simple and dense, making it possible to fabricate large memories at a low cost. EPROMs were therefore attractive in applications that not require frequent programming. Electrically-Erasable PROM (EEPROM) can be erased without removing from board, unlike in UV erasable where memory must be removed from the board. The voltage approximately applied for programming is 18V. In addition, it is a reverse process; means by applying high negative voltage at gate can erase the cell. Another advantage over EPROM is that EEPROM can be programmed for 105 cycles. 

UNIT IV.ASYNCHRONOUS SEQUENTIAL CIRCUIT

Asynchronous Sequential
       Circuits
Asynchronous sequential circuits:
Do not use clock pulses. The change of
internal state occurs when there is a change in
the input variable.
Their memory elements are either unclocked
flip-flops or time-delay elements.
They often resemble combinational circuits
with feedback.
Their synthesis is much more difficult than the
synthesis of clocked synchronous sequential
circuits.
They are used when speed of operation is
important.
The communication of two units, with each unit
having its own independent clock, must be done
with asynchronous circuits.
The next step is to plot the Y1 and Y2 functions in a
map:
Combining the binary values in corresponding
squares the following transition table is obtained:
The transition table shows the value of Y = Y1Y2
inside each square. Those entries where Y = y are
circled to indicate a stable condition.
1. Analysis Procedure
The analysis of asynchronous sequential circuits
proceeds in much the same way as that of clocked
synchronous sequential circuits. From a logic
diagram, Boolean expressions are written and
then transferred into tabular form.
1.1 Transition Table
The analysis of the circuit starts by considering the
excitation variables (Y1 and Y2) as outputs and the
secondary variables (y1 and y2) as inputs.
The Boolean expressions are:
                 Y1 xy1 x ′y 2
                         ′Y2 xy1 x ′y 2
3
4
[image: image1159.jpg]JOT ,

[ @] cle]ededse

Jol]

o| e.o]@i|®o

J00

[ ——

@ o w o o w

Qe L]
©

oo

Transtion abls ‘Map foroutput
Yok sy fonny

— )

ERSE-

"af@[]  w[@]
@] | |®
o @ o @
@] Te[@ ) )
e o @ L B T e
w@fe] Te@[w] W@«
o |® 3 e of [a] af [u] of [«
10 n 10 1 n 0 u @ n w0

(9 Posible transitons

[
et

(0 Posible transiions

W
frmarRT—

o @ o [® o [

[ET— (0 Unsabi

o=y




The circuit has four stable total states – y1y2x =
000, 011, 110, and 101 – and four unstable total
states – 001, 010, 111, and 100.
The state table of the circuit is shown below:
In order to obtain the circuit described by a flow
table, it is necessary to assign to each state a
distinct value.
This assignment converts the flow table into a
transition table. This is shown below:
This table provides the same information as the
transition table.
1.2 Flow Table
In a flow table the states are named by letter
symbols. Examples of flow tables are as follows:
The resulting logic diagram is shown below:
primitive flow table
5
6
1.3 Race Conditions
A race condition exists in an asynchronous circuit
when two or more binary state variables change
value in response to a change in an input variable.
When unequal delays are encountered, a race
condition may cause the state variable to change
in an unpredictable manner.
If the final stable state that the circuit reaches
does not depend on the order in which the state
variables change, the race is called a noncritical
race. Examples of noncritical races are illustrated
in the transition tables below:
The transition tables below illustrate critical races:
Races can be avoided by directing the circuit
through a unique sequence of intermediate
unstable states. When a circuit does that, it is said
to have a cycle. Examples of cycles are:
7
8
[image: image1160.jpg]o u_w

V- sk Ry
Y= S+ RywhenSR=0




1.4 Stability Considerations
An asynchronous sequential circuit may become
unstable and oscillate between unstable states
because of the presence of feedback. The
instability condition can be detected from the
transition table. Consider the following circuit:
2. Circuits with SR Latches
The SR latch is used as a time-delay element in
asynchronous sequential circuits. The NOR gate
SR latch and its truth table are:
The excitation function is:
′′Y ( x1y )′x2 ( x1 y ′)x2 x1x2 x2 y ′
The feedback is more visible when the circuit is
redrawn as:
and the transition table for the circuit is:
The Boolean function of the output is:
Y [(S y )′R ]′(S y )R ′SR ′R ′y
Those values of Y that are equal to y are circled
and represent stable states. When the input x1x2 is
11, the state variable alternates between 0 and 1
indefinitely.
                                                  9
and the transition table for the circuit is:
10
The NAND gate SR latch and its truth table are:
The behaviour of the SR latch can be investigated
from the transition table.
The condition to be avoided is that both S and R
inputs must not be 1 simultaneously. This condition
is avoided when SR = 0 (i.e., ANDing of S and R
must always result in 0).
When SR = 0 holds at all times, the excitation
function derived previously:
Y SR ′R ′y
The transition table for the circuit is:
can be expressed as:
Y S R ′y
The condition to be avoided here is that both S
and R not be 0 simultaneously which is satisfied
when S′R′ = 0.
The excitation function for the circuit is:
11
Y [S(Ry )′]′S ′Ry
12
[image: image1161.jpg]vis

0 ox
[
0o
Fal

o 1w

@[t

@

R TR TI)




2.1 Analysis Example
Consider the following circuit:
The next step is to derive the transition table of the
circuit. The excitation functions are derived from
the relation Y = S + R′y as:
′Y1 S1 R1y1
x1y 2 ( x1 x 2 )y1 x1y 2 x1y1 x 2 y1
′Y2 S2 R2 y 2
′′x1x 2 ( x 2 y1 )y 2 x1x 2 x 2 y 2 y1y 2
Next a composite map for Y = Y1Y2 is developed:
The first step is to obtain the Boolean functions for
the S and R inputs in each latch:
S1 x1y 2
      ′′R1 x1x 2
S2 x1x 2
       ′R2 x 2 y 1
The next step is to check if SR = 0 is satisfied:
′′S1R1 x1y 2 x1x 2 0
               ′S2R2 x1x 2 x 2 y1 0
Investigation of the transition table reveals that the
circuit is stable.
There is a critical race condition when the circuit is
initially in total state y1y2x1x2 = 1101 and x2
changes from 1 to 0. If Y1 changes to 0 before Y2,
the circuit goes to total state 0100 instead of 0000.
13
14
The result is 0 because x1x′1 = x2x′2 = 0
2.2 SR Latch Excitation Table
Lists the required inputs S and R for each of the
possible transitions from the secondary variable y
to the excitation variable Y.
X represents a don’t care condition.
The maps are then used to derive the simplified
Boolean functions:
Useful for obtaining the Boolean functions for S
and R and the circuit’s logic diagram from a given
transition table.
2.3 Implementation Example
Consider the following transition table:
′S x1x 2
′R x1
The logic diagram consists of an SR latch and
gates required to implement the S and R Boolean
functions. The circuit when a NOR SR latch is used
is as shown below:
′Y x1x2 x1y
From the information given in the transition table
and the SR latch excitation table, we can obtain
maps for the S and R inputs of the latch:
15
With a NAND SR latch the complemented values
for S and R must be used.
16
[image: image1162.jpg]sae D ¢ Q Comments
A 0o o D = QbeconseG = 1
b 1 I I D = QbeconeG = |
. oo o Aferstte aord
a 1o o e stte ¢
. [ ' e state bor £
7 o o | e stte ¢

@1a- &




3. Design Procedure
There are a number of steps that must be carried
out in order to minimize the circuit complexity and
to produce a stable circuit without critical races.
Briefly, the design steps are as follows:
1.
2.
3.
Obtain a primitive flow table from the given
specification.
Reduce the flow table by merging rows in
the primitive flow table.
Assign binary states variables to each row of
the reduced flow table to obtain the
transition table.
Assign output values to the dashes
associated with the unstable states to obtain
the output maps.
Simplify the Boolean functions of the
excitation and output variables and draw the
logic diagram.
3.1 Design Example – Specification
Design a gated latch circuit with two inputs, G
(gate) and D (data), and one output Q. The gated
latch is a memory element that accepts the value
of D when G = 1 and retains this value after G
goes to 0. Once G = 0, a change in D does not
change the value of the output Q.
Step 1: Primitive Flow Table
A primitive flow table is a flow table with only one
stable total state in each row. The total state
consists of the internal state combined with the
input.
To derive the primitive flow table, first a table with
all possible total states in the system is needed:
4.
5.
The design process will be demonstrated by going
through a specific example:
Each row in the above table specifies a total state.
17
18
The resulting primitive table for the gated latch is
shown below:
Step 2: Reduction of the Primitive Flow Table
The primitive flow table can be reduced to a
smaller number of rows if two or more stable
states are placed in the same row of the flow
table. The simplified merging rules are as follows:
1.
Two or more rows in the primitive flow table
can be merged into one if there are non-
conflicting states and outputs in each of the
columns.
 Whenever, one state symbol and don’t care
entries are encountered in the same column,
the state is listed in the merged row.
If the state is circled in one of the rows, it is
also circled in the merged row.
The output state is included with each stable
state in the merged row.
2.
First, we fill in one square in each row belonging to
the stable state in that row.
Next recalling that both inputs are not allowed to
change at the same time, we enter dash marks in
each row that differs in two or more variables from
the input variables associated with the stable state.
Next we find values for two more squares in each
row. The comments listed in the previous table
may help in deriving the necessary information.
A dash indicates don’t care conditions.
19
3.
4.
Now apply these rules to the primitive flow table
shown previously.
To see how this is done the primitive flow table is
separated into two parts of three rows each:
20
The circuit has four stable total states – y1y2x =
000, 011, 110, and 101 – and four unstable total
states – 001, 010, 111, and 100.
The state table of the circuit is shown below:
In order to obtain the circuit described by a flow
table, it is necessary to assign to each state a
distinct value.
This assignment converts the flow table into a
transition table. This is shown below:
This table provides the same information as the
transition table.
1.2 Flow Table
In a flow table the states are named by letter
symbols. Examples of flow tables are as follows:
The resulting logic diagram is shown below:
primitive flow table
5
6
[image: image1154][image: image1155][image: image1156.png]


[image: image1157][image: image1158]
