Discrete-time signals

A discrete-time signal is represented as a sequence of numbers:

[image: image1.emf]
Here n is an integer, and x[n] is the nth sample in the sequence. Discrete-time signals are often obtained by sampling continuous-time signals. In this case the nth sample of the sequence is equal to the value of the analogue signal xa(t) at time t = nT:

 [image: image2.emf]

The sampling period is then equal to T, and the sampling frequency is fs = 1=T .

x[1]

[image: image3.emf]
For this reason, although x[n] is strictly the nth number in the sequence, we often refer to it as the nth sample. We also often refer to \the sequence x[n]" when we mean the entire sequence. Discrete-time signals are often depicted graphically as follows:

[image: image4.emf]
(This can be plotted using the MATLAB function stem.) The value x[n] is unde_ned for noninteger values of n. Sequences can be manipulated in several ways. The sum and product of two sequences x[n] and y[n] are de_ned as the sample-by-sample sum and product respectively. Multiplication of x[n] by a is de_ned as the multiplication of each sample value by a. A sequence y[n] is a delayed or shifted version of x[n] if

[image: image5.emf]with n0 an integer.

The unit sample sequence

[image: image6.emf]is defined as [image: image7.emf]
This sequence is often referred to as a discrete-time impulse, or just impulse. It plays the same role for discrete-time signals as the Dirac delta function does for continuous-time signals. However, there are no mathematical complications in its defnition.

An important aspect of the impulse sequence is that an arbitrary sequence can be represented as a sum of scaled, delayed impulses. For

example, the

sequence[image: image8.emf]can be represented as

[image: image9.emf]
In general, any sequence can be expressed as [image: image10.emf]
The unit step sequence[image: image11.emf]is defined as

[image: image12.emf]
The unit step is related to the impulse by [image: image13.emf]
Alternatively, this can be expressed as

[image: image14.emf]
Conversely, the unit sample sequence can be expressed as the _rst backward difference of the unit step sequence

[image: image15.emf]
Exponential sequences are important for analysing and representing discrete-time systems. The general form is

[image: image16.emf]
If A and _ are real numbers then the sequence is real. If 0 < _ < 1 and A is positive, then the sequence values are positive and decrease with increasing n: [image: image17.emf]For 􀀀1 < _ < 0 the sequence alternates in sign, but decreases in magnitude. For j_j > 1 the sequence grows in magnitude as n increases. A sinusoidal sequence[image: image18.emf]has the form

[image: image19.emf]
[image: image20.emf]
The frequency of this complex sinusoid is !0, and is measured in radians per sample. The phase of the signal is . The index n is always an integer. This leads to some important

di_erences between the properties of discrete-time and continuous-time complex exponentials: [image: image21.emf] Consider the complex exponential with frequency

[image: image22.emf]Thus the sequence for the complex exponential with frequency[image: image23.emf]is exactly the same as that for the complex exponential with frequency More generally, complex exponential sequences with frequencies[image: image24.emf] where r is an integer, are indistinguishable

from one another. Similarly, for sinusoidal sequences [image: image25.emf]
In the continuous-time case, sinusoidal and complex exponential sequences are always periodic. Discrete-time sequences are periodic (with period N) if x[n] = x[n + N] for all n: [image: image26.emf]
Thus the discrete-time sinusoid is only periodic if [image: image27.emf]which requires that

[image: image28.emf]
The same condition is required for the complex exponential

sequence [image: image29.emf] to be periodic. The two factors just described can be combined to reach the conclusion that there are only N distinguishable frequencies for which the

corresponding sequences are periodic with period N. One such set is [image: image30.emf]
 Discrete-time systems

A discrete-time system is de_ned as a transformation or mapping operator that maps an input signal x[n] to an output signal y[n]. This can be denoted as

[image: image31.emf]Example: Ideal delay

[image: image32.emf]
[image: image33.emf][image: image34.emf]
Memoryless systems

A system is memoryless if the output y[n] depends only on x[n] at the

same n. For example, y[n] = (x[n])2 is memoryless, but the ideal delay

[image: image35.emf]
 Linear systems

A system is linear if the principle of superposition applies. Thus if y1[n]

is the response of the system to the input x1[n], and y2[n] the response

to x2[n], then linearity implies

 Additivity:

[image: image36.emf]
 Scaling:

[image: image37.emf]
These properties combine to form the general principle of superposition

[image: image38.emf]
In all cases a and b are arbitrary constants. This property generalises to many inputs, so the response of a linear

system to[image: image39.emf]
Time-invariant systems

A system is time invariant if a time shift or delay of the input sequence

causes a corresponding shift in the output sequence. That is, if y[n] is the response to x[n], then y[n -n0] is the response to x[n -n0].

For example, the accumulator system

[image: image40.emf]
is time invariant, but the compressor system

[image: image41.emf]
for M a positive integer (which selects every Mth sample from a sequence) is not.

Causality

A system is causal if the output at n depends only on the input at n

and earlier inputs. For example, the backward difference system

[image: image42.emf]is causal, but the forward difference system

[image: image43.emf]
is not.

Stability

A system is stable if every bounded input sequence produces a bounded

output sequence:

[image: image44.emf]x[n]

is an example of an unbounded system, since its response to the unit

[image: image45.emf]
which has no _nite upper bound.

Linear time-invariant systems

If the linearity property is combined with the representation of a general sequence as a linear combination of delayed impulses, then it follows that a linear time-invariant (LTI) system can be completely characterised by its impulse response. Suppose hk[n] is the response of a linear system to the impulse h[n -k]

at n = k. Since

[image: image46.emf]
If the system is additionally time invariant, then the response to _[n -k] is h[n -k]. The previous equation then becomes

[image: image47.emf]
This expression is called the convolution sum. Therefore, a LTI system has the property that given h[n], we can _nd y[n] for any input x[n]. Alternatively, y[n] is the convolution of x[n] with h[n], denoted as follows: [image: image48.emf]
The previous derivation suggests the interpretation that the input sample at n = k, represented by [image: image49.emf] is transformed by the system into an output sequence[image: image50.emf]. For each k, these sequences are superimposed to yield the overall output sequence: A slightly di_erent interpretation, however, leads to a onvenient computational form: the nth value of the output, namely y[n], is obtained by multiplying the input sequence (expressed as a function of k) by the sequence with values h[n-k], and then summing all the values of the products x[k]h[n-k]. The key to this method is in understanding how to form the sequence h[n -k] for all values of n of interest. To this end, note that h[n -k] = h[- (k -n)]. The sequence h[-k] is seen to be equivalent to the sequence h[k] reected around the origin

[image: image51.emf]Since the sequences are non-overlapping for all negative n, the output must be zero y[n] = 0; n < 0:

[image: image52.emf]
The Discrete Fourier Transform

The discrete-time Fourier transform (DTFT) of a sequence is a continuous function of !, and repeats with period 2_. In practice we usually want to obtain the Fourier components using digital computation, and can only evaluate them for a discrete set of frequencies. The discrete Fourier transform (DFT) provides a means for achieving this. The DFT is itself a sequence, and it corresponds roughly to samples, equally spaced in frequency, of the Fourier transform of the signal. The discrete Fourier transform of a length N signal x[n], n = 0; 1; : : : ;N -1 is given by

[image: image53.emf]
An important property of the DFT is that it is cyclic, with period N, both in the discrete-time and discrete-frequency domains. For example, for any integer r,

[image: image54.emf]
since [image: image55.emf] Similarly, it is easy to show that x[n + rN] = x[n], implying periodicity of the synthesis equation. This is important | even though the DFT only depends on samples in the interval 0 to N -1, it is implicitly assumed that the signals repeat with period N in both the time and frequency domains. To this end, it is sometimes useful to de_ne the periodic extension of the signal x[n] to be To this end, it is sometimes useful to de_ne the periodic extension of the signal x[n] to be x[n] = x[n mod N] = x[((n))N]: Here n mod N and ((n))N are taken to mean n modulo N, which has the value of the remainder after n is divided by N. Alternatively, if n is written in the form n = kN + l for 0 < l < N, then n mod N = ((n))N = l:

[image: image56.emf]
It is sometimes better to reason in terms of these periodic extensions when dealing with the DFT. Specifically, if X[k] is the DFT of x[n], then the inverse DFT of X[k] is ~x[n]. The signals x[n] and ~x[n] are identical over the interval 0 to N 􀀀 1, but may differ outside of this range. Similar statements can be made regarding the transform Xf[k].

 Properties of the DFT

Many of the properties of the DFT are analogous to those of the discrete-time Fourier transform, with the notable exception that all shifts involved must be considered to be circular, or modulo N. Defining the DFT pairs [image: image57.emf] and [image: image58.emf]
[image: image59.emf]
[image: image60.emf]
Linear convolution of two finite-length sequences Consider a sequence x1[n] with length L points, and x2[n] with length P points. The linear convolution of the sequences,[image: image61.emf]
Therefore L + P 􀀀 1 is the maximum length of x3[n] resulting from the

linear convolution. The N-point circular convolution of x1[n] and x2[n] is

[image: image62.emf]
It is easy to see that the circular convolution product will be equal to the linear onvolution product on the interval 0 to N 􀀀 1 as long as we choose N - L + P +1. The process of augmenting a sequence with zeros to make it of a required length is called zero padding.

Fast Fourier transforms

The widespread application of the DFT to convolution and spectrum analysis is due to the existence of fast algorithms for its implementation. The class of methods are referred to as fast Fourier transforms (FFTs). Consider a direct implementation of an 8-point DFT:

[image: image63.emf]
If the factors [image: image64.emf] have been calculated in advance (and perhaps stored in a lookup table), then the calculation of X[k] for each value of k requires 8 complex multiplications and 7 complex additions. The 8-point DFT therefore requires 8 * 8 multiplications and 8* 7 additions. For an N-point DFT these become N2 and N(N - 1) respectively. If N = 1024, then approximately one million complex multiplications and one million complex additions are required. The key to reducing the computational complexity lies in the

observation that the same values of x[n] [image: image65.emf] are efectively calculated many times as the computation proceeds | particularly if the transform is long. The conventional decomposition involves decimation-in-time, where at each stage a N-point transform is decomposed into two N=2-point transforms. That is, X[k] can be written as X[k] =N

[image: image66.emf]
The original N-point DFT can therefore be expressed in terms of two N=2-point DFTs.

The N=2-point transforms can again be decomposed, and the process repeated until only 2-point transforms remain. In general this requires log2N stages of decomposition. Since each stage requires approximately N complex multiplications, the complexity of the resulting algorithm is of the order of N log2 N. The difference between N2 and N log2 N complex multiplications can become considerable for large values of N. For example, if N = 2048 then N2=(N log2 N) _ 200. There are numerous variations of FFT algorithms, and all exploit the basic redundancy in the computation of the DFT. In almost all cases an

Of the shelf implementation of the FFT will be sufficient | there is seldom any reason to implement a FFT yourself.

S ome forms of digital filters are more appropriate than others when real-world effects are considered. This article looks at the effects of finite word length and suggests that some implementation forms are less susceptible to the errors that finite word length effects introduce.

In articles about digital signal processing (DSP) and digital filter design, one thing I've noticed is that after an in-depth development of the filter design, the implementation is often just given a passing nod. References abound concerning digital filter design, but surprisingly few deal with implementation. The implementation of a digital filter can take many forms. Some forms are more appropriate than others when various real-world effects are considered. This article examines the effects of finite word length. It suggests that certain implementation forms are less susceptible than others to the errors introduced by finite word length effects.

