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SAMPLING:
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[image: image3]
Figure 3.3 (a) Spectrum of a signal. (b) Spectrum of an undersampled version of the signal exhibiting the aliasing phenomenon.


[image: image4]
Figure 3.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum of instantaneously sampled version of the signal, assuming the use of a sampling rate greater than the Nyquist rate. (c) Magnitude response of reconstruction filter.

 Pulse-Amplitude Modulation :
[image: image128.wmf])
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Pulse Amplitude Modulation – Natural and Flat-Top Sampling:

[image: image6]

[image: image7]
· The most common technique for sampling voice in PCM systems is to a sample-and-hold circuit. 

· The instantaneous amplitude of the analog (voice) signal is held as a constant charge on a capacitor for the duration of the sampling period Ts. 

· This technique is useful for holding the sample constant while other processing is taking place, but it alters the frequency spectrum and introduces an error, called aperture error, resulting in an inability to recover exactly the original analog signal.

· The amount of error depends on how mach the analog changes during the holding time, called aperture time.

· To estimate the maximum voltage error possible, determine the maximum slope of the analog signal and multiply it by the aperture time DT 

Recovering the original message signal m(t) from PAM signal :
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Other Forms of Pulse Modulation:
· In pulse width modulation (PWM), the width of each pulse is made directly proportional to the amplitude of the information signal. 

· In pulse position modulation, constant-width pulses are used, and the position or time of occurrence of each pulse from some reference time is made directly proportional to the amplitude of the information signal.


[image: image9]
Pulse Code Modulation (PCM) :
· Pulse code modulation (PCM) is produced by analog-to-digital conversion process. 

· As in the case of other pulse modulation techniques, the rate at which samples are taken and encoded must conform to the Nyquist sampling rate.
· The sampling rate must be greater than, twice the highest frequency in the analog signal, 

                    fs > 2fA(max)                
 Quantization Process:
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[image: image11]
Figure 3.10 Two types of quantization: (a) midtread and (b) midrise.

Quantization Noise:


[image: image12]
Figure 3.11 Illustration of the quantization process
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[image: image13]
Pulse Code Modulation (PCM):

[image: image14]
Figure 3.13 The basic elements of a PCM system

Quantization (nonuniform quantizer):

[image: image15]
Compression laws. (a) m -law. (b) A-law.
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[image: image16]
Figure 3.15 Line codes for the electrical representations of binary data. 

(a) Unipolar NRZ signaling. (b) Polar NRZ signaling.

(c) Unipolar RZ signaling. (d) Bipolar RZ signaling. 

(e) Split-phase or Manchester code.

 Noise consideration in PCM systems:
      (Channel noise,  quantization noise)


[image: image17]

[image: image18]
Time-Division Multiplexing(TDM):

[image: image19]
Digital Multiplexers :

[image: image20]
 Virtues, Limitations and Modifications of PCM:
   Advantages of PCM

    1. Robustness to noise and interference

    2. Efficient regeneration 

    3. Efficient SNR and bandwidth trade-off

    4. Uniform format 

    5. Ease add and drop

    6. Secure   

 Delta Modulation (DM) :
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[image: image22]
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The modulator consists of a comparator, a quantizer, and an accumulator

        The output of the accumulator is

[image: image136.wmf][
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[image: image23]
Two types of quantization errors :
Slope overload distortion and granular noise 

Slope Overload Distortion and Granular Noise:
[image: image137.wmf][
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Delta-Sigma modulation (sigma-delta modulation):
[image: image138.wmf][
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    The            modulation which has an integrator can 

     relieve the  draw back of delta modulation (differentiator)  

     Beneficial effects of using integrator:

       1. Pre-emphasize the low-frequency content

       2. Increase correlation between adjacent samples 

         (reduce the variance of the error signal at the quantizer input)
       3. Simplify receiver design

    Because the transmitter has an integrator , the receiver 

    consists simply of a low-pass filter. 

    (The differentiator in the conventional DM receiver is cancelled by the integrator )
 Linear Prediction (to reduce the sampling rate):

Consider a finite-duration impulse response (FIR) 

discrete-time filter which consists of three blocks :

1. Set of p ( p: prediction order) unit-delay elements (z-1) 

2. Set of multipliers with coefficients w1,w2,…wp

3. Set of adders ( ( )
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Linear adaptive prediction :
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[image: image25]
Figure 3.27

Block diagram illustrating the linear adaptive prediction process

 Differential Pulse-Code Modulation (DPCM):
Usually PCM has the sampling rate higher than the Nyquist rate .The encode signal contains redundant information. DPCM can efficiently remove this redundancy.  

[image: image26]
Figure 3.28 DPCM system. (a) Transmitter. (b) Receiver.

Input signal to the quantizer is defined by: 


[image: image27]
Processing Gain:
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 Adaptive Differential Pulse-Code Modulation (ADPCM):
     Need for coding speech at low bit rates , we have two aims in mind:

      1. Remove redundancies from the speech signal as far as possible.

      2. Assign the available bits in a perceptually efficient manner. 


[image: image28]
Figure 3.29 Adaptive quantization with backward estimation (AQB).


[image: image29]
Figure 3.30 Adaptive prediction with backward estimation (APB).

           UNIT II: 
BASEBAND FORMATTING TECHNIQUES
 

CORRELATIVE LEVEL CODING:
· Correlative-level coding (partial response signaling) 

· adding ISI to the transmitted signal in a controlled manner

· Since ISI introduced into the transmitted signal is known, its effect can be interpreted at the receiver

· A practical method of achieving the theoretical maximum signaling rate of 2W symbol per second in a bandwidth of W Hertz 

· Using realizable and perturbation-tolerant filters
Duo-binary Signaling :
Duo : doubling of the transmission capacity of a straight binary system


[image: image30]
· Binary input sequence {bk} : uncorrelated binary symbol 1, 0
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[image: image31]

 SHAPE  \* MERGEFORMAT 
[image: image32]


· The tails of hI(t) decay as 1/|t|2, which is a faster rate of decay than 1/|t| encountered in the ideal Nyquist channel.

· Let       represent the estimate of the original pulse ak as conceived by the receiver at time t=kTb

· Decision feedback : technique of using a stored estimate of the previous symbol 

· Propagate : drawback, once error are made, they tend to propagate through the output

· Precoding : practical means of avoiding the error propagation phenomenon before the duobinary coding
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· {dk} is applied to a pulse-amplitude modulator, producing a corresponding two-level sequence of short pulse {ak}, where +1 or –1 as before
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· |ck|=1 : random guess in favor of symbol 1 or 0

· |ck|=1 : random guess in favor of symbol 1 or 0


[image: image33]

[image: image34]
Modified Duo-binary Signaling :
· Nonzero at the origin : undesirable

· Subtracting amplitude-modulated pulses spaced 2Tb second
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[image: image35]
· precoding
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[image: image37]
· |ck|=1 : random guess in favor of symbol 1 or 0
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Generalized form of  correlative-level coding:

· |ck|=1 : random guess in favor of symbol 1 or 0
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[image: image38]
Baseband M-ary PAM Transmission:

[image: image39]
· Produce one of M possible amplitude level

· T : symbol duration

· 1/T: signaling rate, symbol per second, bauds 

· Equal to log2M bit per second

· Tb : bit duration of equivalent binary PAM : 

· To realize the same average probability of symbol error, transmitted power must be increased by a factor of M2/log2M compared to binary PAM

Tapped-delay-line equalization :
· Approach to high speed transmission

· Combination of two basic signal-processing operation

· Discrete PAM 

· Linear modulation scheme

· The number of detectable amplitude levels is often limited by ISI

· Residual distortion for ISI : limiting factor on data rate of the system


[image: image40]

[image: image41]
· Equalization : to compensate for the residual distortion

· Equalizer : filter

· A device well-suited for the design of a linear equalizer is the tapped-delay-line filter

· Total number of taps is chosen to be (2N+1)
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· P(t) is equal to the convolution of c(t) and h(t)
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· nT=t sampling time, discrete convolution sum
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· Nyquist criterion for distortionless transmission, with T used in place of Tb, normalized condition p(0)=1
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· Zero-forcing equalizer 

· Optimum in the sense that it minimizes the peak distortion(ISI) – worst case

· Simple implementation

· The longer equalizer, the more the ideal condition for distortionless transmission

Adaptive Equalizer :

· The channel is usually time varying 

· Difference in the transmission characteristics of the individual links that may be switched together

· Differences in the number of links in a connection

· Adaptive equalization

· Adjust itself by operating on the the input signal

· Training sequence

· Precall equalization

· Channel changes little during an average data call

· Prechannel equalization

· Require the feedback channel 

· Postchannel equalization

· synchronous 

· Tap spacing is the same as the symbol duration of transmitted signal

Least-Mean-Square Algorithm:

· Adaptation may be achieved

· By observing the error b/w desired pulse shape and actual pulse shape

· Using this error to estimate the direction in which the tap-weight should be changed

· Mean-square error criterion

· More general in application

· Less sensitive to timing perturbations

·     : desired response,       : error signal,       : actual response

· Mean-square error is defined by cost fuction
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· Ensemble-averaged cross-correlation

[image: image167.wmf]î

í

ì

±

±

±

=

=

=

î

í

ì

¹

=

=

N

n

n

n

n

nT

p

.....,

,

2

,

1

0

,

0

,

1

0

,

0

0

,

1

)

(


[image: image168.wmf]2

n

Ee

e

éù

=

ëû


· Optimality condition for minimum mean-square error
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· Mean-square error is a second-order and a parabolic function of tap weights as a multidimentional bowl-shaped surface

· Adaptive process is a successive adjustments of tap-weight seeking the bottom of the bowl(minimum value        )

· Steepest descent algorithm

· The successive adjustments to the tap-weight in direction opposite to the vector of gradient                    )

· Recursive formular (( : step size parameter)

[image: image170.wmf][

]

()

exnnk

RkEex

-

=


· Least-Mean-Square Algorithm

· Steepest-descent algorithm is not available in an unknown environment

· Approximation to the steepest descent algorithm using instantaneous estimate
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· LMS is a feedback system 

· In the case of small (, roughly similar to steepest descent algorithm 


[image: image42]
Operation of the equalizer:
· square error Training mode

· Known sequence is transmitted and synchorunized version is generated in the receiver

· Use the training sequence, so called pseudo-noise(PN) sequence

· Decision-directed mode

· After training sequence is completed

· Track relatively slow variation in channel characteristic 

· Large ( : fast tracking, excess mean 


[image: image43]
Implementation Approaches:
· Analog

· CCD, Tap-weight is stored in digital memory, analog sample and multiplication

· Symbol rate is too high

· Digital 

· Sample is quantized and stored in shift register

· Tap weight is stored in shift register, digital multiplication

· Programmable digital

· Microprocessor

· Flexibility

· Same H/W may be time shared

Decision-Feed back equalization:

[image: image44]
· Baseband channel impulse response : {hn}, input : {xn}
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· Using data decisions made on the basis of precursor to take care of the postcursors

· The decision would obviously have to be correct 


[image: image45]
· Feedforward section : tapped-delay-line equalizer

· Feedback section : the decision is made on previously detected symbols of the input sequence

· Nonlinear feedback loop by decision device
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Eye Pattern:
· Experimental tool for such an evaluation in an insightful manner

· Synchronized superposition of all the signal of interest viewed within a particular signaling interval

· Eye opening : interior region of the eye pattern


[image: image46]
· In the case of an M-ary system, the eye pattern contains (M-1) eye opening, where M is the number of discreteamplitude levels


[image: image47]

 SHAPE  \* MERGEFORMAT 
[image: image48]
Interpretation of Eye Diagram:

[image: image49]
         UNIT III  BASEBAND CODING TECHNIQUES  

[image: image50]

[image: image51]

[image: image52]

[image: image53]
ASK, OOK, MASK:
· The amplitude (or height) of the sine wave varies to transmit the ones and zeros


[image: image54]
· One amplitude encodes a 0 while another amplitude encodes a 1 (a form of amplitude modulation)

Binary amplitude shift keying, Bandwidth:
· d ≥ 0-related to the condition of the line

[image: image55]
B = (1+d) x S = (1+d) x N x 1/r
Implementation of binary ASK:

[image: image56]
Frequency Shift Keying:

· One frequency encodes a 0 while another frequency encodes a 1 (a form of frequency modulation)

[image: image57]
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FSK Bandwidth:
· Limiting factor: Physical capabilities of the carrier

· Not susceptible to noise as much as ASK


[image: image58]
· Applications

· On voice-grade lines, used up to 1200bps

· Used for high-frequency (3 to 30 MHz) radio transmission

· used at higher frequencies on LANs that use coaxial cable

      DBPSK:

· Differential BPSK

· 0 = same phase as last signal element

· 1 = 180º shift from last signal element


[image: image59]

[image: image60]
Concept of a constellation :

[image: image61]

[image: image62]

[image: image63]
M-ary PSK:
Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved
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· D = modulation rate, baud

· R = data rate, bps

· M = number of different signal elements = 2L

· L = number of bits per signal element

QAM:
· As an example of QAM, 12 different phases are combined with two different amplitudes

· Since only 4 phase angles have 2 different amplitudes, there are a total of 16 combinations

· With 16 signal combinations, each baud equals 4 bits of information (2 ^ 4 = 16)

· Combine ASK and PSK such that each signal corresponds to multiple bits

· More phases than amplitudes

· Minimum bandwidth requirement same as ASK or PSK


[image: image64]

[image: image65]
QAM and QPR:
· QAM is a combination of ASK and PSK

· Two different signals sent simultaneously on the same carrier frequency

· M=4, 16, 32, 64, 128, 256

· Quadrature Partial Response (QPR)

· 3 levels (+1, 0, -1), so 9QPR, 49QPR


[image: image66]
Offset quadrature phase-shift keying (OQPSK):
· QPSK can have 180 degree jump, amplitude fluctuation

· By offsetting the timing of the odd and even bits by one bit-period, or half a symbol-period, the in-phase and quadrature components will never change at the same time. 
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[image: image67]
Generation and Detection of Coherent BPSK:

[image: image68]
Figure 6.26 Block diagrams for (a) binary FSK transmitter and (b) coherent binary FSK receiver.


[image: image69]

[image: image70]
Figure 6.29 Signal-space diagram for MSK system.

Generation and Detection of MSK Signals:

[image: image71]
Figure 6.31 Block diagrams for (a) MSK transmitter and (b) coherent MSK receiver.
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       UNIT IV   BASEBAND RECEPTION TECHNIQUES
· Forward Error Correction (FEC)

· Coding designed so that errors can be corrected at the receiver

· Appropriate for delay sensitive and one-way transmission (e.g., broadcast TV) of data

· Two main types, namely block codes and convolutional codes. We will only look at block codes

Block Codes:

· We will consider only binary data

· Data is grouped into blocks of length k bits (dataword)

· Each dataword is coded into blocks of length n bits (codeword), where in general n>k

· This is known as an (n,k) block code

· A vector notation is used for the datawords and codewords,

· Dataword d = (d1 d2….dk)

· Codeword c = (c1 c2……..cn)

· The redundancy introduced by the code is quantified by the code rate,

· Code rate = k/n

· i.e., the higher the redundancy, the lower the code rate

Hamming Distance:

· Error control capability is determined by the Hamming distance

· The Hamming distance between two codewords is equal to the number of differences between them, e.g.,

10011011

11010010  have a Hamming distance = 3

· Alternatively, can compute by adding codewords (mod 2)

=01001001 (now count up the ones)

· The maximum number of detectable errors is
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That is the maximum number of correctable errors is given by,


where dmin is the minimum Hamming distance between 2 codewords and     means the smallest integer

Linear Block Codes:
· As seen from the second Parity Code example, it is possible to use a table to hold all the codewords for a code and to look-up the appropriate codeword based on the supplied dataword

· Alternatively, it is possible to create codewords by addition of other codewords. This has the advantage that there is now no longer the need to held every possible codeword in the table.

· If there are k data bits, all that is required is to hold k linearly independent codewords, i.e., a set of k codewords none of which can be produced by linear combinations of 2 or more codewords in the set.

· The easiest way to find k linearly independent codewords is to choose those which have ‘1’ in just one of the first k positions and ‘0’ in the other k-1 of the first k positions.

· For example for a (7,4) code, only four codewords are required, e.g.,

[image: image186.wmf]11


· So, to obtain the codeword for dataword 1011, the first, third and fourth codewords in the list are added together, giving 1011010

· This process will now be described in more detail

· An (n,k) block code has code vectors

d=(d1 d2….dk) and

c=(c1 c2……..cn)

· The block coding process can be written as 
c=dG


where G is the Generator Matrix
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· Thus,
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· ai must be linearly independent, i.e., 


Since codewords are given by summations of the ai vectors, then to avoid 2 datawords having the same codeword the ai vectors must be linearly independent.
· Sum (mod 2) of any 2 codewords is also a codeword, i.e.,


Since for datawords d1 and d2 we have;
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So,
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Error Correcting Power of LBC:
· The Hamming distance of a linear block code (LBC) is simply the minimum Hamming weight (number of 1’s or equivalently the distance from the all 0 codeword) of the non-zero codewords

· Note d(c1,c2) = w(c1+ c2) as shown previously

· For an LBC, c1+ c2=c3

· So min (d(c1,c2)) = min (w(c1+ c2)) = min (w(c3))

· Therefore to find min Hamming distance just need to search among the 2k codewords to find the min Hamming weight – far simpler than doing a pair wise check for all possible codewords.
Linear Block Codes – example 1:
· For example a (4,2) code, suppose;


[image: image75]


a1 = [1011]

a2 = [0101]
· For d = [1 1], then;
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Linear Block Codes – example 2:
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· Is an even single parity code

Systematic Codes:
· For a systematic block code the dataword appears unaltered in the codeword – usually at the start

· The generator matrix has the structure,
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R = n - k

· P is often referred to as parity bits

I is k*k identity matrix. Ensures data word appears as beginning of codeword P is k*R matrix.

Decoding Linear Codes:
· One possibility is a ROM look-up table

· In this case received codeword is used as an address

· Example – Even single parity check code;



Address
Data



000000
   0



000001
   1



000010
   1



000011
   0



………
    .

· Data output is the error flag, i.e., 0 – codeword ok,

· If no error, data word is first k bits of codeword

· For an error correcting code the ROM can also store data words

· Another possibility is algebraic decoding, i.e., the error flag is computed from the received codeword (as in the case of simple parity codes)

· How can this method be extended to more complex error detection and correction codes?

Parity Check Matrix:
· A linear block code is a linear subspace S sub of all length n vectors (Space S)

· Consider the subset S null of all length n vectors in space S that are orthogonal to all length n vectors in S sub
· It can be shown that the dimensionality of S null is n-k, where n is the dimensionality of S and k is the dimensionality of 

     S sub
·  It can also be shown that S null is a valid subspace of S and consequently S sub  is also the null space of S null
· S null can be represented by its basis vectors. In this case the generator basis vectors (or ‘generator matrix’ H) denote the generator matrix for S null - of dimension n-k = R

· This matrix is called the parity check matrix of the code defined by G, where G is obviously the generator matrix for S sub - of dimension k

· Note that the number of vectors in the basis defines the dimension of the subspace

· So the dimension of H is n-k (= R) and all vectors in the null space are orthogonal to all the vectors of the code

· Since the rows of H, namely the vectors bi are members of the null space they are orthogonal to any code vector

· So a vector y is a codeword only if yHT=0

· Note that a linear block code can be specified by either G or H
Parity Check Matrix:
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R = n - k
· So H is used to check if a codeword is valid,
                              
· The rows of H, namely, bi, are chosen to be orthogonal to rows of G, namely ai

· Consequently the dot product of any valid codeword with any bi is zero

This is so since,
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and so,
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· This means that a codeword is valid (but not necessarily correct) only if cHT = 0. To ensure this it is required that the rows of H are independent and are orthogonal to the rows of G

· That is the bi span the remaining  R (= n - k) dimensions of the codespace

· For example consider a (3,2) code. In this case G has 2 rows, a1 and a2

· Consequently all valid codewords sit in the subspace (in this case a plane) spanned by a1 and a2

· In this example the H matrix has only one row, namely b1. This vector is orthogonal to the plane containing the rows of the G matrix, i.e., a1 and a2

· Any received codeword which is not in the plane containing a1 and a2 (i.e., an invalid codeword) will thus have a component in the direction of b1 yielding a non- zero dot product between itself and b1.

Error Syndrome:
· For error correcting codes we need a method to compute the required correction

· To do this we use the Error Syndrome, s of a received codeword, cr




s = crHT

· If cr is corrupted by the addition of an error vector, e, then




cr = c + e


and




s = (c + e) HT = cHT + eHT




s = 0 + eHT


Syndrome depends only on the error

· That is, we can add the same error pattern to different code words and get the same syndrome.

· There are 2(n - k) syndromes but 2n error patterns

· For example for a (3,2) code there are 2 syndromes and 8 error patterns

· Clearly no error correction possible in this case

· Another example. A (7,4) code has 8 syndromes and 128 error patterns.

· With 8 syndromes we can provide a different value to indicate single errors in any of the 7 bit positions as well as the zero value to indicate no errors

· Now need to determine which error pattern caused the syndrome

· For systematic linear block codes, H is constructed as follows,



G = [ I | P]   and so   H = [-PT | I]


where I is the k*k identity for G and the R*R identity for H

· Example, (7,4) code, dmin= 3
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Error Syndrome – Example:
· For a correct received codeword cr = [1101001]


In this case,
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Standard Array:
· The Standard Array is constructed as follows,


[image: image76]
· The array has 2k columns (i.e., equal to the number of valid codewords) and 2R rows (i.e., the number of syndromes)

Hamming Codes:
· We will consider a special class of SEC codes (i.e., Hamming distance = 3) where,

· Number of parity bits R = n – k and n = 2R – 1

· Syndrome has R bits

· 0 value implies zero errors

· 2R – 1 other syndrome values, i.e., one for each bit that might need to be corrected

· This is achieved if each column of H is a different binary word – remember s = eHT

· Systematic form of (7,4) Hamming code is,
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· The original form is non-systematic,
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· Compared with the systematic code, the column orders of both G and H are swapped so that the columns of H are a binary count

· The column order is now 7, 6, 1, 5, 2, 3, 4, i.e., col. 1 in the non-systematic H is col. 7 in the systematic H.
Convolutional Code Introduction:

· Convolutional codes map information to code bits sequentially by convolving a sequence of information bits with “generator” sequences 

· A convolutional encoder encodes K information bits to N>K code bits at one time step 

· Convolutional codes can be regarded as block codes for which the encoder has a certain structure such that we can express the encoding operation as convolution
· Convolutional codes are applied in applications that require good performance with low implementation cost. They operate on code streams (not in blocks)

· Convolution codes have memory that utilizes previous bits to encode or decode following bits (block codes are memoryless)

· Convolutional codes achieve good performance by expanding their memory depth

· Convolutional codes are denoted by (n,k,L), where L is code (or encoder) Memory depth (number of register stages)

· Constraint length C=n(L+1) is defined as the number of encoded bits a message bit can influence to


[image: image77]
· Convolutional encoder, k = 1, n = 2, L=2

· Convolutional encoder is a finite state machine (FSM) processing information bits in a serial manner

· Thus the generated code is a function of input and the state of the FSM

· In this (n,k,L) = (2,1,2) encoder each message bit influences a span of C= n(L+1)=6 successive output bits = constraint length C
· Thus, for generation of n-bit output, we require n shift registers in k = 1 convolutional encoders


[image: image78]

[image: image79]
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Here each message bit influences 

a span of C = n(L+1)=3(1+1)=6 
successive output bits


[image: image80]
Convolution point of view in encoding and generator matrix:

[image: image81]
Example: Using generator matrix


[image: image82]
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[image: image83]
Representing convolutional codes: Code tree:


[image: image84]
(n,k,L) = (2,1,2) encoder
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[image: image85]
Representing convolutional codes compactly: code trellis and state diagram:
                                                                                 State diagram


[image: image86]
Inspecting state diagram: Structural properties of convolutional codes:

· Each new block of k input bits causes a transition into new state

· Hence there are 2k branches leaving each state 

· Assuming encoder zero initial state, encoded word for any input of k bits can thus be obtained. For instance, below for u=(1 1 1 0 1), encoded word v=(1 1, 1 0, 0 1, 0 1, 1 1, 1 0, 1 1, 1 1) is produced: 


[image: image87]
- encoder state diagram for (n,k,L)=(2,1,2) code

- note that the number of states is 2L+1 = 8

Distance for some convolutional codes:


[image: image88]
THE VITERBI ALGORITHEM:

· [image: image211.wmf][
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Problem of optimum decoding is to find the minimum distance path from the initial state back to initial state (below from S0 to S0). The minimum distance is the sum of all path metrics


· that is maximized by the correct path
· Exhaustive maximum likelihood 
method must search all the paths 
in phase trellis (2k paths emerging/
entering from 2 L+1 states for 
an (n,k,L) code)

· The Viterbi algorithm gets its
efficiency via concentrating intosurvivor paths of the trellis


[image: image89]
THE SURVIVOR PATH:

· Assume for simplicity a convolutional code with k=1, and up to 2k = 2 branches can enter each state in trellis diagram

· Assume optimal path passes S. Metric comparison is done by adding the metric of S into S1 and S2. At the survivor path the accumulated metric is naturally smaller (otherwise it could not be the optimum path)

[image: image90]
· For this reason the non-survived path can
be discarded -> all path alternatives need not
to be considered

· Note that in principle whole transmitted
sequence must be received before decision.
However, in practice storing of states for 
input length of 5L is quite adequate


[image: image91]
The maximum likelihood path:


[image: image92]
The decoded ML code sequence is 11 10 10 11 00 00 00 whose Hamming 

distance to the received sequence is 4 and the respective decoded 

sequence is 1 1 0 0 0 0 0 (why?). Note that this is the minimum distance path.

(Black circles denote the deleted branches, dashed lines: '1' was applied)  

How to end-up decoding?

· In the previous example it was assumed that the register was finally filled with zeros thus finding the minimum distance path

· In practice with long code words zeroing requires feeding of long sequence of zeros to the end of the message bits: this wastes channel capacity & introduces delay

· To avoid this path memory truncation is applied:

· Trace all the surviving paths to the 
depth where they merge

· Figure right shows a common point
at a memory depth J

· J is a random variable whose applicable
magnitude shown in the figure (5L) 
has been experimentally tested for
negligible error rate increase

· Note that this also introduces the
delay of 5L!


[image: image93]
Hamming Code Example:

[image: image94]
· H(7,4)

· Generator matrix G: first 4-by-4 identical matrix

· Message information vector p
[image: image95]
· Transmission vector x

· Received vector r

and error vector e

· Parity check matrix H


[image: image96]

[image: image97]

[image: image98]
Error Correction:
· If there is no error, syndrome vector z=zeros
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 SHAPE  \* MERGEFORMAT 
[image: image100]
· If there is one error at location 2

· New syndrome vector z is
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Example of CRC:
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Example: Using generator matrix:
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Turbo Codes:

· Backgound

· Turbo codes were proposed by Berrou and Glavieux in the 1993 International Conference in Communications.

· Performance within 0.5 dB of the channel capacity limit for BPSK was demonstrated.

· Features of turbo codes

· Parallel concatenated coding 

· Recursive convolutional encoders

· Pseudo-random interleaving

· Iterative decoding

Motivation: Performance of Turbo Codes

· Comparison:

· Rate 1/2 Codes.

· K=5 turbo code.

· K=14 convolutional code.

· Plot is from: 

· L. Perez, “Turbo Codes”, chapter 8 of Trellis Coding by C. Schlegel. IEEE Press, 1997
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Pseudo-random Interleaving:
· The coding dilemma:

· Shannon showed that large block-length random codes achieve channel capacity.

· However, codes must have structure that permits decoding with reasonable complexity.

· Codes with structure don’t perform as well as random codes.

· “Almost all codes are good, except those that we can think of.”

· Solution:

· Make the code appear random, while maintaining enough structure to permit decoding.

· This is the purpose of the pseudo-random interleaver.

· Turbo codes possess random-like properties.

· However, since the interleaving pattern is known, decoding is possible.

Why Interleaving and Recursive Encoding?
· In a coded systems:

· Performance is dominated by low weight code words.

· A “good” code: 

· will produce low weight outputs with very low probability.

· An RSC code:

· Produces low weight outputs with fairly low probability.

· However, some inputs still cause low weight outputs.

· Because of the interleaver:

· The probability that both encoders have inputs that cause low weight outputs is very low.

· Therefore the parallel concatenation of both encoders will produce a “good” code.

Iterative Decoding:
· There is one decoder for each elementary encoder.

· Each decoder estimates the a posteriori probability (APP) of each data bit.

· The APP’s are used as a priori information by the other decoder.

· Decoding continues for a set number of iterations.

· Performance generally improves from iteration to iteration, but follows a law of diminishing returns

The Turbo-Principle:
Turbo codes get their name because the decoder uses feedback, like a turbo engine


[image: image110]
Performance as a Function of Number of Iterations:
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Turbo Code Summary:
· Turbo code advantages:

· Remarkable power efficiency in AWGN and flat-fading channels for moderately low BER.

· Deign tradeoffs suitable for delivery of multimedia services. 

· Turbo code disadvantages:

· Long latency.

· Poor performance at very low BER.

· Because turbo codes operate at very low SNR, channel estimation and tracking is a critical issue.

· The principle of iterative or “turbo” processing can be applied to other problems.

· Turbo-multiuser detection can improve performance of coded multiple-access systems.
 UNIT V  BANDPASS SIGNAL TRANSMISSION AND RECEPTION
 
· Spread data over wide bandwidth

· Makes jamming and interception harder

· Frequency hoping

· Signal broadcast over seemingly random series of frequencies

· Direct Sequence

· Each bit is represented by multiple bits in transmitted signal

· Chipping code
Spread Spectrum Concept:

· Input fed into channel encoder

· Produces narrow bandwidth analog signal around central frequency

· Signal modulated using sequence of digits 

· Spreading code/sequence

· Typically generated by pseudonoise/pseudorandom number generator

· Increases bandwidth significantly

· Spreads spectrum

· Receiver uses same sequence to demodulate signal

· Demodulated signal fed into channel decoder

General Model of Spread Spectrum System:

[image: image112]
Gains:

· Immunity from various noise and multipath distortion

· Including jamming

· Can hide/encrypt signals

· Only receiver who knows spreading code can retrieve signal

· Several users can share same higher bandwidth with little interference

· Cellular telephones

· Code division multiplexing (CDM)

· Code division multiple access (CDMA)

Pseudorandom Numbers:

· Generated by algorithm using initial seed

· Deterministic algorithm

· Not actually random

· If algorithm good, results pass reasonable tests of randomness

· Need to know algorithm and seed to predict sequence
Frequency Hopping Spread Spectrum (FHSS):
· Signal broadcast over seemingly random series of frequencies

· Receiver hops between frequencies in sync with transmitter

· Eavesdroppers hear unintelligible blips

· Jamming on one frequency affects only a few bits

Basic Operation:

· Typically 2k carriers frequencies forming 2k channels

· Channel spacing corresponds with bandwidth of input

· Each channel used for fixed interval

· 300 ms in IEEE 802.11

· Some number of bits transmitted using some encoding scheme

· May be fractions of bit (see later)

· Sequence dictated by spreading code
Frequency Hopping Example:

[image: image113]
Frequency Hopping Spread Spectrum System (Transmitter):

[image: image114]
Frequency Hopping Spread Spectrum System (Receiver):

[image: image115]
Slow and Fast FHSS:
· Frequency shifted every Tc seconds

· Duration of signal element is Ts seconds

· Slow FHSS has Tc ( Ts

· Fast FHSS has Tc < Ts

· Generally fast FHSS gives improved performance in noise (or jamming)

Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

[image: image116]
Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

[image: image117]
FHSS Performance Considerations:
· Typically large number of frequencies used

· Improved resistance to jamming

Direct Sequence Spread Spectrum (DSSS):

· Each bit represented by multiple bits using spreading code

· Spreading code spreads signal across wider frequency band

· In proportion to number of bits used

· 10 bit spreading code spreads signal across 10 times bandwidth of 1 bit code

· One method:

· Combine input with spreading code using XOR

· Input bit 1 inverts spreading code bit

· Input zero bit doesn’t alter spreading code bit

· Data rate equal to original spreading code

· Performance similar to FHSS

Direct Sequence Spread Spectrum Example:

[image: image118]
Direct Sequence Spread Spectrum Transmitter:

[image: image119]
Direct Sequence Spread Spectrum Receiver:

[image: image120]
Direct Sequence Spread Spectrum Using BPSK Example:
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Code Division Multiple Access (CDMA):
· Multiplexing Technique used with spread spectrum

· Start with data signal rate D

· Called bit data rate

· Break each bit into k chips according to fixed pattern specific to each user

· User’s code

· New channel has chip data rate kD chips per second

· E.g. k=6, three users (A,B,C) communicating with base receiver R

· Code for A = <1,-1,-1,1,-1,1>

· Code for B = <1,1,-1,-1,1,1>

· Code for C = <1,1,-1,1,1,-1>

CDMA Example:

[image: image122]
· Consider A communicating with base

· Base knows A’s code

· Assume communication already synchronized

· A wants to send a 1

· Send chip pattern <1,-1,-1,1,-1,1>

· A’s code

· A wants to send 0

· Send chip[ pattern <-1,1,1,-1,1,-1>

· Complement of A’s code

· Decoder ignores other sources when using A’s code to decode

· Orthogonal codes

CDMA for DSSS:

· n users each using different orthogonal PN sequence

· Modulate each users data stream

· Using BPSK

· Multiply by spreading code of user

CDMA in a DSSS Environment:

[image: image123]
******************** ALL THE BEST ******************
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Figure 6.30 (a) Input binary sequence. (b) Waveform of scaled time function s1f1(t). (c) Waveform of scaled time function s2f2(t). (d) Waveform of the MSK signal s(t) obtained by adding s1f1(t) and s2f2(t) on a bit-by-bit basis.
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Figure 9.11 CDMA in a DSSS Environment
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