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INTRODUCTION TO 8 BIT AND 16 BIT MICROPROCESSORS – H/W ARCHITECTURE
COMPUTER AND ITS ORGANIZATION
A Computer is a programmable machine. It responds to a specific set of instructions in a well-defined manner. It can execute a prerecorded list of instructions (a program ).Modern computers are electronic and digital. The actual machinery wires, transistors, and circuits is called hardware. The instructions and data are called software.

All general-purpose computers require the following hardware components:

Memory: Enables a computer to store, at least temporarily, data and programs.

Mass storage device: Allows a computer to permanently retain large amounts of data. Common mass storage devices include disk drives and tape drives.

Input device: Usually a keyboard and mouse are the input device through which data and instructions enter a computer.

Output device: A display screen, printer, or other device that lets you see what the computer has accomplished.

Central processing unit (CPU): The heart of the computer, this is the component that actually executes instructions.

In addition to these components, many others make it possible for the basic components to work together efficiently.

For example, every computer requires a bus that transmits data from one part of

the computer to another.

Computers can be generally classified by size and power as follows, though there is considerable overlap:

Personal computer: A small, single-user computer based on a microprocessor. In addition to the microprocessor, a personal computer has a keyboard for entering data, a monitor for displaying information, and a storage device for saving data.

Working station: A powerful, single-user computer. A workstation is like a personal computer, but it has a more powerful microprocessor and a higherquality monitor.

Minicomputer: A multi-user computer capable of supporting from 10 to hundreds of users simultaneously.

Mainframe: A powerful multi-user computer capable of supporting many hundreds or thousands of users simultaneously.

Supercomputer: An extremely fast computer that can perform hundreds of millions of instructions per second.


     Minicomputer:

A midsized computer. In size and power, minicomputers lie between workstations and mainframes.

A minicomputer, a term no longer much used, is a computer of a size intermediate between a microcomputer and a mainframe.

Typically, minicomputers have been stand-alone computers (computer systems with attached terminals and other devices) sold to small and mid-size businesses for general business applications and to large enterprises for department-level operations.
Workstation:
A type of computer used for engineering applications (CAD/CAM), desktop publishing, software development, and other types of applications that require a moderate amount of computing power and relatively high quality graphics capabilities.

Workstations generally come with a large, high- resolution graphics screen, at least 64 MB (mega bytes) of RAM, built-in network support, and a graphical user interface.

Microcomputer: The term microcomputer is generally synonymous with personal computer, or a computer that depends on a microprocessor.

Microcomputers are designed to be used by individuals, whether in the form of PCs, workstations or notebook computers.

A microcomputer contains a CPU on a microchip (the microprocessor), a memory

system (typically ROM and RAM), a bus system and I/O ports, typically housed in a motherboard.

 INTRODUCTION TO MICROPROCESSOR
Microprocessor: A silicon chip that contains a CPU. In the world of personal

Computers, the terms microprocessor and CPU are used interchangeably. A microprocessor (sometimes abbreviated μP) is a digital electronic component with miniaturized transistors on a single semiconductor integrated circuit (IC).One or more microprocessors typically serves as a central processing unit (CPU) in a computer system or handheld device. Microprocessors made possible the advent of the microcomputer. At the heart of all personal computers and most working stations sits a microprocessor.

Microprocessors also control the logic of almost all digital devices, from clock radios to fuel-injection systems for automobiles.

Three basic characteristics differentiate microprocessors:

Instruction set: The set of instructions that the microprocessor can execute.

Bandwidth: The number of bits processed in a single instruction.

Clock speed: Given in megahertz (MHz), the clock speed determines how many instructions per second the processor can execute.

Microcontroller: 
A highly integrated chip that contains all the components comprising a controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task - to control a particular system.

A microcontroller differs from a microprocessor, which is a general-purpose chip that is used to create a multi-function computer or device and requires multiple chips to handle various tasks. A microcontroller is meant to be more self-contained and independent, and functions as a tiny, dedicated computer.
The great advantage of microcontrollers, as opposed to using larger microprocessors, is that the parts-count and design costs of the item being controlled can be kept to a minimum. They are typically designed using CMOS (complementary metal oxide semiconductor) technology, an efficient fabrication technique that uses less power and is more immune to power spikes than other techniques. Microcontrollers are sometimes called embedded microcontrollers, which just means that they are part of an embedded system that is, one part of a larger device or system

Embedded system: 
An Embedded System is a specialized computer system that is part of a larger system or machine. Typically, an embedded system is housed on a single microprocessor board with the programs stored in ROM. Virtually all appliances that have a digital Interface- watches, microwaves, VCRs, cars -utilize embedded systems. Some embedded systems include an operating system, but many are so specialized that the entire logic can be implemented as a single program.

 Address Bus, Data Bus and Control Bus

The preferred method for data/information transfer between system components is by a common data bus. Where point-to-point data transfer is required, the digital  format  is  the  preferred  method

Control  Bus

The control bus is used by the CPU to direct and monitor the actions of the other functional areas of the computer. It is used to transmit a variety of individual signals  (read,  write,  interrupt,  acknowledge,  and  so forth)   necessary   to   control   and   coordinate   the operations of the computer. The individual signals transmitted over the control bus and their functions are covered in the appropriate functional area description.

Address Bus

The address bus consists of all the signals necessary to define any of the possible memory address locations within the computer, or for modular memories any of the possible memory address locations within a module. An address is defined as a label, symbol, or other set of characters used to designate a location or register where information is stored. Before data or instructions can be written into or read from memory by the CPU or I/O sections, an address must be transmitted to memory over the address bus.

Data Bus

The bidirectional data bus, sometimes called the memory bus, handles the transfer of all data and instructions between functional areas of the computer. The bi directional data bus can  only  transmit  in  one direction at a time. The data bus is used to transfer instructions from memory to the CPU for execution. It carries data (operands) to and from the CPU and memory as  required  by  instruction  translation.  The  data bus is also used to transfer data between memory and the  I/O  section  during  input/output  operations

Tristate bus

 Three-state, tri-state, or 3-state logic allows an output port to assume a high impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the circuit. This allows multiple circuits to share the same output line or lines (such as a bus).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and 4000 series as well as in other types, but also internally in many integrated circuits. Other typical uses are internal and external buses in microprocessors, memories, and peripherals. Many devices are controlled by an active-low input called OE (Output Enable) which dictates whether the outputs should be held in a high-impedance state or drive their respective loads (to either 0- or 1-level).

 Clock generation 

A clock generator is a circuit that produces a timing signal (known as a clock signal and behaves as such) for use in synchronizing a circuit's operation. The signal can range from a simple symmetrical square wave to more complex arrangements. The basic parts that all clock generators share are a resonant circuit and an amplifier.

The resonant circuit is usually a quartz piezo-electric oscillator, although simpler tank circuits and even RC circuits may be used.

The amplifier circuit usually inverts the signal from the oscillator and feeds a portion back into the oscillator to maintain oscillation.

The generator may have additional sections to modify the basic signal. The 8088 for example, used a 2/3 duty cycle clock, which required the clock generator to incorporate logic to convert the 50/50 duty cycle which is typical of raw oscillators.

Other such optional sections include frequency divider or clock multiplier sections. Programmable clock generators allow the number used in the divider or multiplier to be changed, allowing any of a wide variety of output frequencies to be selected without modifying the hardware.

The clock generator in a motherboard is often changed by computer enthusiasts to control the speed of their CPU, FSB, GPU and RAM. Typically the programmable clock generator is set by the BIOS at boot time to the value selected by the enthusiast; although some systems have dynamic frequency scalingthat frequently re-program the clock generator.

Connecting Microprocessor to I/O devices
Memory-mapped I/O (MMIO) and port I/O (also called isolated I/O or port-mapped I/O abbreviated PMIO) are two complementary methods of performing input/output between the CPU andperipheral devices in a computer. An alternative approach, not discussed in this article, is using dedicated I/O processors — commonly known as channels on mainframe computers — that execute their own instructions.

Memory-mapped I/O (not to be confused with memory-mapped file I/O) uses the same address bus to address both memory and I/O devices - the memory and registers of the I/O devices are mapped to (associated with) address values. So when an address is used by the CPU it may refer to a portion of physical RAM, or it can instead refer to memory of the I/O device. Thus, the CPU instructions used to access the memory are also used for accessing devices. Each I/O device monitors the CPU's address bus and responds to any of the CPU's access of address space assigned to that device, connecting the data bus to a desirable device's hardware register. To accommodate the I/O devices, areas of the addresses used by the CPU must be reserved for I/O and not be available for normal physical memory. The reservation might be temporary — the Commodore 64 could bank switch between its I/O devices and regular memory — or permanent.

Port-mapped I/O uses a special class of CPU instructions specifically for performing I/O. This is generally found on Intel microprocessors, specifically the IN and OUT instructions which can read and write one to four bytes (outb, outw, outl) to an I/O device. I/O devices have a separate address space from general memory, either accomplished by an extra "I/O" pin on the CPU's physical interface, or an entire bus dedicated to I/O. Because the address space for I/O is isolated from that for main memory, this is sometimes referred to as isolated I/O.

A device's direct memory access (DMA) is not affected by those CPU-to-device communication methods, especially it is not affected by memory mapping. This is because by definition, DMA is a memory-to-device communication method that bypasses the CPU.

Hardware interrupt is yet another communication method between CPU and peripheral devices. However, it is always treated separately for a number of reasons. It is device-initiated, as opposed to the methods mentioned above, which are CPU-initiated. It is also unidirectional, as information flows only from device to CPU. Lastly, each interrupt line carries only one bit of information with a fixed meaning, namely "an event that requires attention has occurred in a device on this interrupt line".

DATA TRANSFER SCHEMES

Synchronous Data Transfer:                                   
Synchronous means “at the same time”. In this format of data transfer transmitter and receiver device are synchronized with the same clock pulse.

This type of data transfer format is used in between the devices that match in speed. This method is invariably used in between memory and microprocessor as they are compatible.
Asynchronous Data Transfer: -
Asynchronous means “at a regular interval”. In this method data transfer is not based on predetermined timing pattern in this technique the status  of  the  IO device is checked by the microprocessor before the data is transferred. This method is invariably used in between microprocessor and IO devices

MODES OF DATA TRANSFER
THE MICROPROCESSOR receives or transmits binary data in either of two mode:-
PARALLEL MODE:-In a parallel mode , the entire word is transferred at one time .the device commonly used for data transfer are keyboards seven segment LEDs data converters and memory.
SERIAL MODE:-In the serial mode , data are transferred one bit at a time over a single line between the microprocessors and a peripheral. It is commonly used with peripherals such as CRT terminals , printers, cassette tapes and modems for telephone.
DMA: 

Direct Memory Access (DMA) is a method of allowing data to be moved from one location to another in a computer without intervention from the central processor (CPU).

The way that the DMA function is implemented varies between computer architectures, so this discussion will limit itself to the implementation and workings of the DMA subsystem on the IBM Personal Computer (PC), the IBM PC/AT and all of its successors and clones.

The PC DMA subsystem is based on the Intel® 8237 DMA controller. The 8237 contains four DMA channels that can be programmed independently and any one of the channels may be active at any moment. These channels are numbered 0, 1, 2 and 3. Starting with the PC/AT, IBM added a second 8237 chip, and numbered those channels 4, 5, 6 and 7.

The original DMA controller (0, 1, 2 and 3) moves one byte in each transfer. The second DMA controller (4, 5, 6, and 7) moves 16-bits from two adjacent memory locations in each transfer, with the first byte always coming from an even-numbered address. The two controllers are identical components and the difference in transfer size is caused by the way the second controller is wired into the system.

The 8237 has two electrical signals for each channel, named DRQ and -DACK. There are additional signals with the names HRQ (Hold Request), HLDA (Hold Acknowledge), -EOP (End of Process), and the bus control signals -MEMR (Memory Read), -MEMW (Memory Write), -IOR (I/O Read), and -IOW (I/O Write).

The 8237 DMA is known as a “fly-by” DMA controller. This means that the data being moved from one location to another does not pass through the DMA chip and is not stored in the DMA chip. Subsequently, the DMA can only transfer data between an I/O port and a memory address, but not between two I/O ports or two memory locations.
8086 MICROPROCESSOR
•It is a 16-bit μp.

•8086 has a 20 bit address bus can access up to 220 memory locations (1 MB).

•It can support up to 64K I/O ports.

•It provides 14, 16 -bit registers.

•It has multiplexed address and data bus AD0- AD15 and A16 – A19.

•It requires single phase clock with 33% duty cycle to provide internal timing.

•8086 is designed to operate in two modes, Minimum and Maximum.

•It can prefetches upto 6 instruction bytes from memory and queues them in order to

speed up instruction execution.

•It requires +5V power supply.

•A 40 pin dual in line package

Minimum and Maximum Modes:

•The minimum mode is selected by applying logic 1 to the MN / MX input pin. This is a

single microprocessor configuration.

•The maximum mode is selected by applying logic 0 to the MN / MX input pin. This is a

multi micro processors configuration.

[image: image1.emf]
[image: image2.emf]
[image: image3.emf]
Internal Architecture of 8086

•8086 has two blocks BIU and EU.

•The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.

•EU executes instructions from the instruction system byte queue.

•Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelining. This results in efficient use of the system bus and system performance.

•BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

•EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.

BUS INTERFACR UNIT:

•It provides a full 16 bit bidirectional data bus and 20 bit address bus.

•The bus interface unit is responsible for performing all external bus operations.

Specifically it has the following functions:

•Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and Bus control.

•The BIU uses a mechanism known as an instruction stream queue to implement a pipeline architecture.
•This queue permits prefetch of up to six bytes of instruction code. When ever the queue of the BIU is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from memory, the BIU is free to look ahead in the program by prefetching the next sequential instruction.

•These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two instruction bytes in a single memory cycle.

•After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the empty location nearest the output.

•The EU accesses the queue from the output end. It reads one instruction byte after the other from the output of the queue. If the queue is full and the EU is not requesting access to operand in memory.

•These intervals of no bus activity, which may occur between bus cycles are known as Idle state.
•If the BIU is already in the process of fetching an instruction when the EU request it to read or write operands from memory or I/O, the BIU first completes the instruction fetch bus cycle before initiating the operand read / write cycle.

•The BIU also contains a dedicated adder which is used to generate the 20bit physical address that is output on the address bus. This address is formed by adding an appended 16 bit segment address and a 16 bit offset address.

•For example: The physical address of the next instruction to be fetched is formed by combining the current contents of the code segment CS register and the current contents of the instruction pointer IP register.

•The BIU is also responsible for generating bus control signals such as those for memory read or write and I/O read or write.
EXECUTION UNIT

The Execution unit is responsible for decoding and executing all instructions.

•The EU extracts instructions from the top of the queue in the BIU, decodes them, generates operands if necessary, passes them to the BIU and requests it to perform the read or write bys cycles to memory or I/O and perform the operation specified by the instruction on the operands.

•During the execution of the instruction, the EU tests the status and control flags and updates them based on the results of executing the instruction.

•If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to top of the queue.

•When the EU executes a branch or jump instruction, it transfers control to a location corresponding to another set of sequential instructions.

•Whenever this happens, the BIU automatically resets the queue and then begins to fetch instructions from this new location to refill the queue.

Signal Description of 8086•The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged in a 40 pin CERDIP or plastic package.

•The 8086 operates in single processor or multiprocessor configuration to achieve high performance. The pins serve a particular function in minimum mode (single processor mode) and other function in maximum mode configuration (multiprocessor mode ).

•The 8086 signals can be categorised in three groups. The first are the signal having common functions in minimum as well as maximum mode.

•The second are the signals which have special functions for minimum mode and third are the signals having special functions for maximum mode.
The following signal descriptions are common for both modes.

•AD15-AD0: These are the time multiplexed memory I/O address and data lines.

• Address remains on the lines during T1 state, while the data is available on the data bus during T2, T3, Tw and T4.

•These lines are active high and float to a tristate during interrupt acknowledge and local bus hold acknowledge cycles.

•A19/S6,A18/S5,A17/S4,A16/S3: These are the time multiplexed address and status lines.

•During T1 these are the most significant address lines for memory operations.

•During I/O operations, these lines are low. During memory or I/O operations, status information is available on those lines for T2,T3,Tw and T4.

•The status of the interrupt enable flag bit is updated at the beginning of each clock cycle.

•The S4 and S3 combinedly indicate which segment register is presently being used for memory accesses as in below fig.

•These lines float to tri-state off during the local bus hold acknowledge. The status line S6 is always low.

•The address bit are separated from the status bit using latches controlled by the ALE signal.

BHE /S7: The bus high enable is used to indicate the transfer of data over the higher order ( D15-D8 ) data bus as shown in table. It goes low for the data transfer over D15- D8 and is used to derive chip selects of odd address memory bank or peripherals. BHE is low during T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be transferred on higher byte of data bus. The status information is available during T2, T3 and T4. The signal is active low and tristated during hold. It is low during T1 for the first pulse of the interrupt acknowledges cycle.

•RDRead: This signal on low indicates the peripheral that the processor is performing memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of

any read cycle. The signal remains tristated during the hold acknowledge.
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•READY: This is the acknowledgement from the slow device or memory that they have completed the data transfer. The signal made available by the devices is synchronized by the 8284A clock generator to provide ready input to the 8086. the signal is active high.

•INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock cycles of each instruction to determine the availability of the request. If any interrupt request is pending, the processor enters the interrupt acknowledge cycle.

•This can be internally masked by resulting the interrupt enable flag. This signal is active high and internally synchronized.

•TESTThis input is examined by a ‘WAIT’ instruction. If the TEST pin goes low, execution will continue, else the processor remains in an idle state. The input is synchronized internally during each clock cycle on leading edge of clock.

•CLK- Clock Input: The clock input provides the basic timing for processor operation and bus control activity. Its an asymmetric square wave with 33% duty cycle.

•MN/MX: The logic level at this pin decides whether the processor is to operate in either

minimum or maximum mode.

•The following pin functions are for the minimum mode operation of 8086.

•M/IO – Memory/IO: This is a status line logically equivalent to S2 in maximum mode.

When it is low, it indicates the CPU is having an I/O operation, and when it is high, it

indicates that the CPU is having a memory operation. This line becomes active high in

the previous T4 and remains active till final T4 of the current cycle. It is tristated during

local bus “hold acknowledge “.

• INTA Interrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

•ALE – Address Latch Enable: This output signal indicates the availability of the valid

address on the address/data lines, and is connected to latch enable input of latches. This

signal is active high and is never tristated.

•DT/ R – Data Transmit/Receive: This output is used to decide the direction of data

flow through the transreceivers (bidirectional buffers). When the processor sends out

data, this signal is high and when the processor is receiving data, this signal is low.

•DEN – Data Enable: This signal indicates the availability of valid data over the

address/data lines. It is used to enable the transreceivers ( bidirectional buffers ) to

separate the data from the multiplexed address/data signal. It is active from the middle of

T2 until the middle of T4. This is tristated during ‘ hold acknowledge’ cycle.

•HOLD, HLDA- Acknowledge: When the HOLD line goes high, it indicates to the

processor that another master is requesting the bus access.

•The processor, after receiving the HOLD request, issues the hold acknowledge signal on

HLDA pin, in the middle of the next clock cycle after completing the current bus

cycle.•At the same time, the processor floats the local bus and control lines. When the

processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an

asynchronous input, and is should be externally synchronized.

•If the DMA request is made while the CPU is performing a memory or I/O cycle, it will

release the local bus during T4 provided:

1.The request occurs on or before T2 state of the current cycle.

2.The current cycle is not operating over the lower byte of a word.

3.The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

•The following pin function are applicable for maximum mode operation of 8086.

•S2, S1, S0 – Status Lines: These are the status lines which reflect the type of operation,

being carried out by the processor. These become activity during T4 of the previous cycle

and active during T1 and T2 of the current bus cycles.
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General Bus Operation:

•The 8086 has a combined address and data bus commonly referred as a time multiplexed

address and data bus.

•The main reason behind multiplexing address and data over the same pins is the

maximum utilisation of processor pins and it facilitates the use of 40 pin standard DIP

package.

•The bus can be demultiplexed using a few latches and transreceivers, when ever

required.

•Basically, all the processor bus cycles consist of at least four clock cycles. These are

referred to as T1, T2, T3, T4. The address is transmitted by the processor during T1. It is

present on the bus only for one cycle.

•The negative edge of this ALE pulse is used to separate the address and the data or status

information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the

type of operation.

•Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.

Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.
MINIMUM MODE 8086 SYSTEM
•In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

•In this mode, all the control signals are given out by the microprocessor chip itself.

There is a single microprocessor in the minimum mode system.

•The remaining components in the system are latches, transreceivers, clock generator,

memory and I/O devices. Some type of chip selection logic may be required for selecting

memory or I/O devices, depending upon the address map of the system.

•Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are

used for separating the valid address from the multiplexed address/data signals and are

controlled by the ALE signal generated by 8086.
General Bus Operation Cycle in Maximum Mode
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•Transreceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

•They are controlled by two signals namely, DEN and DT/R.

•The DEN signal indicates the direction of data, i.e. from or to the processor. The system

contains memory for the monitor and users program storage.

•Usually, EPROM are used for monitor storage, while RAM for users program storage. A

system may contain I/O devices.

•The working of the minimum mode configuration system can be better described in

terms of the timing diagrams rather than qualitatively describing the operations.

•The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is

the timing diagram for write cycle.

•The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and

also M / IO signal. During the negative going edge of this signal, the valid address is

latched on the local bus.

•The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO

signal indicates a memory or I/O operation.

•At T2, the address is removed from the local bus and is sent to the output. The bus is

then tristated. The read (RD) control signal is also activated in T2.

•The read (RD) signal causes the address device to enable its data bus drivers. After RD

goes low, the valid data is available on the data bus.

•The addressed device will drive the READY line high. When the processor returns the

read signal to high level, the addressed device will again tristate its bus drivers.

•A write cycle also begins with the assertion of ALE and the emission of the address. The

M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending

the address in T1, the processor sends the data to be written to the addressed location.

•The data remains on the bus until middle of T4 state. The WR becomes active at the

beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

•The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O

word to be read or write.

•The M/IO, RD and WR signals indicate the type of data transfer as specified in table

below.

Write Cycle Timing Diagram for Minimum Mode

•Hold Response sequence: The HOLD pin is checked at leading edge of each clock

pulse. If it is received active by the processor before T4 of the previous cycle or during

T1 state of the current cycle, the CPU activates HLDA in the next clock cycle and for

succeeding bus cycles, the bus will be given to another requesting master.

•The control of the bus is not regained by the processor until the requesting master does

not drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.
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Maximum Mode 8086 System •In the maximum mode, the 8086 is operated by

strapping the MN/MX pin to ground.

•In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

•In the maximum mode, there may be more than one microprocessor in the system

configuration.

•The components in the system are same as in the minimum mode system.

•The basic function of the bus controller chip IC8288, is to derive control signals like RD

and WR ( for memory and I/O devices), DEN, DT/R, ALE etc. using the information by

the processor on the status lines.

•The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are

driven by CPU.

•It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and

AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.

•AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance

of the MCE/PDEN output depends upon the status of the IOB pin.

•If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it

acts as peripheral data enable used in the multiple bus configurations.

•INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to

an interrupting device.

•IORC, IOWC are I/O read command and I/O write command signals respectively. These

signals enable an IO interface to read or write the data from or to the address port.

•The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

•All these command signals instructs the memory to accept or send data from or to the

bus.

•For both of these write command signals, the advanced signals namely AIOWC and

AMWTC are available.

•Here the only difference between in timing diagram between minimum mode and

maximum mode is the status signals used and the available control and advanced

command signals.

[image: image9.emf]
•R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse

as on the ALE and apply a required signal to its DT / R pin during T1.

•In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate

MRDC or IORC. These signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

•The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

•If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Memory Read Timing in Maximum Mode

[image: image10.emf]
MINIMUM MODE INTERFACE
•When the Minimum mode operation is selected, the 8086 provides all control signals

needed to implement the memory and I/O interface.

Memory Write Timing in Maximum mode.
•The minimum mode signal can be divided into the following basic groups: address/data

bus, status, control, interrupt and DMA.

•Address/Data Bus: these lines serve two functions. As an address bus is 20 bits long

and consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A

20bit address gives the 8086 a 1Mbyte memory address space. More over it has an

independent I/O address space which is 64K bytes in length.

•The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0

through A15 respectively. By multiplexed we mean that the bus work as an address bus

during first machine cycle and as a data bus during next machine cycles. D15 is the MSB

and D0 LSB.

•When acting as a data bus, they carry read/write data for memory, input/output data for

I/O devices, and interrupt type codes from an interrupt controller.
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UNIT II 16 BIT MICROPROCESSOR INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING
The Intel 8086 Instruction Set

[image: image12.emf]
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ADDRESSING MODES

•Implied - the data value/data address is implicitly associated with the instruction.

•Register - references the data in a register or in a register pair.

•Immediate - the data is provided in the instruction.

•Direct - the instruction operand specifies the memory address where data is located.

•Register indirect - instruction specifies a register containing an address, where data is

located. This addressing mode works with SI, DI, BX and BP registers.

•Based:- 8-bit or 16-bit instruction operand is added to the contents of a base register

(BX or BP), the resulting value is a pointer to location where data resides.

•Indexed:- 8-bit or 16-bit instruction operand is added to the contents of an index register

(SI or DI), the resulting value is a pointer to location where data resides

•Based Indexed:- the contents of a base register (BX or BP) is added to the contents of

an index register (SI or DI), the resulting value is a pointer to location where data resides.

•Based Indexed with displacement:- 8-bit or 16-bit instruction operand is added to the

contents of a base register (BX or BP) and index register (SI or DI), the resulting value is

a pointer to location where data resides.

•INT instruction - breakpoint interrupt. This is a type 3 interrupt.

•INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

•INTO instruction - interrupt on overflow

•Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the

CPU processes this interrupt it clears TF flag before calling the interrupt processing

routine.

	Arithmetic Instructions

	


The 80x86 provides many arithmetic operations: addition, subtraction, negation, multiplication, division/modulo (remainder), and comparing two values. The instructions that handle these operations are add, adc, sub, sbb, mul, imul, div, idiv, cmp, neg, inc, dec, xadd, cmpxchg, and some miscellaneous conversion instructions: aaa, aad, aam, aas, daa, and das. The following sections describe these instructions in detail. 
The generic forms for these instructions are 
add     dest, src               dest := dest + src

adc     dest, src               dest := dest + src + C

SUB     dest, src               dest := dest - src

sbb     dest, src               dest := dest - src - C

mul     src                     acc := acc * src

imul    src                     acc := acc * src

imul    dest, src1, imm_src     dest := src1 * imm_src

imul    dest, imm_src           dest := dest * imm_src

imul    dest, src               dest := dest * src

div     src                     acc := xacc /-mod src

idiv    src                     acc := xacc /-mod src

cmp     dest, src               dest - src (and set flags)

neg     dest                    dest := - dest

inc     dest                    dest := dest + 1

dec     dest                    dest := dest - 1

xadd    dest, src               (see text)

cmpxchg  operand1, operand2     (see text)

cmpxchg8 ax, operand            (see text)

aaa                             (see text)

aad                             (see text)

aam                             (see text)

aas                             (see text)

daa                             (see text)

das                             (see text)

6.5.1 The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA
These instructions take the forms: 
                add     reg, reg

                add     reg, mem

                add     mem, reg

                add     reg, immediate data

                add     mem, immediate data

                add     eax/ax/al, immediate data

                adc forms are identical to ADD.

                inc     reg

                inc     mem

                inc     reg16

                xadd    mem, reg

                xadd    reg, reg

                aaa

                daa

Note that the aaa and daa instructions use the implied addressing mode and allow no operands.
6.5.1.1 The ADD and ADC Instructions
The syntax of add and adc (add with carry) is similar to mov. Like mov, there are special forms for the ax/eax register that are more efficient. Unlike mov, you cannot add a value to a segment register with these instructions.
The add instruction adds the contents of the source operand to the destination operand. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add computes dest :=dest+source while adc computes dest :=dest+source+C where C represents the value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves exactly like the add instruction. 
Both instructions affect the flags identically. They set the flags as follows: 
· The overflow flag denotes a signed arithmetic overflow. 
· The carry flag denotes an unsigned arithmetic overflow. 
· The sign flag denotes a negative result (i.e., the H.O. bit of the result is one). 
· The zero flag is set if the result of the addition is zero. 
· The auxiliary carry flag contains one if a BCD overflow out of the L.O. nibble occurs. 
· The parity flag is set or cleared depending on the parity of the L.O. eight bits of the result. If there are an even number of one bits in the result, the ADD instructions will set the parity flag to one (to denote even parity). If there are an odd number of one bits in the result, the ADD instructions clear the parity flag (to denote odd parity). 
The add and adc instructions do not affect any other flags.
The add and adc instructions allow eight, sixteen, and (on the 80386 and later) thirty-two bit operands. Both source and destination operands must be the same size. See Chapter Nine if you want to add operands whose size is different.
Since there are no memory to memory additions, you must load memory operands into registers if you want to add two variables together. The following code examples demonstrate possible forms for the add instruction: 
; J:= K + M

                mov     ax, K

                add     ax, M

                mov     J, ax

If you want to add several values together, you can easily compute the sum in a single register: 
; J := K + M + N + P

                mov     ax, K

                add     ax, M

                add     ax, N

                add     ax, P

                mov     J, ax

If you want to reduce the number of hazards on an 80486 or Pentium processor, you can use code like the following: 
                mov     bx, K

                mov     ax, M

                add     bx, N

                add     ax, P

                add     ax, bx

                mov     J, ax

One thing that beginning assembly language programmers often forget is that you can add a register to a memory location. Sometimes beginning programmers even believe that both operands have to be in registers, completely forgetting the lessons from Chapter Four. The 80x86 is a CISC processor that allows you to use memory addressing modes with various instructions like add. It is often more efficient to take advantages of the 80x86's memory addressing capabilities 
; J := K + J

                mov     ax, K           ;This works because addition is

                add     J, ax           ; commutative!

; Often, beginners will code the above as one of the following two sequences.

; This is unnecessary!

                mov     ax, J           ;Really BAD way to compute 

                mov     bx, K           ; J := J + K.

                add     ax, bx

                mov     J, ax

                mov     ax, J           ;Better, but still not a good way to

                add     ax, K           ; compute J := J + K

                mov     J, ax

Of course, if you want to add a constant to a memory location, you only need a single instruction. The 80x86 lets you directly add a constant to memory: 
; J := J + 2

                add     J, 2

There are special forms of the add and adc instructions that add an immediate constant to the al, ax, or eax register. These forms are shorter than the standard add reg, immediate instruction. Other instructions also provide shorter forms when using these registers; therefore, you should try to keep computations in the accumulator registers (al, ax, and eax) as much as possible. 
                add     bl, 2           ;Three bytes long

                add     al, 2           ;Two bytes long

                add     bx, 2           ;Four bytes long

                add     ax, 2           ;Three bytes long

                etc.

Another optimization concerns the use of small signed constants with the add and adc instructions. If a value is in the range -128,,+127, the add and adc instructions will sign extend an eight bit immediate constant to the necessary destination size (eight, sixteen, or thirty-two bits). Therefore, you should try to use small constants, if possible, with the add and adc instructions.
6.5.1.2 The INC Instruction
The inc (increment) instruction adds one to its operand. Except for the carry flag, inc sets the flags the same way as add operand, 1 would.
Note that there are two forms of inc for 16 or 32 bit registers. They are the inc reg and inc reg16 instructions. The inc reg and inc mem instructions are the same. This instruction consists of an opcode byte followed by a mod-reg-r/m byte (see Appendix D for details). The inc reg16 instruction has a single byte opcode. Therefore, it is shorter and usually faster.
The inc operand may be an eight bit, sixteen bit, or (on the 80386 and later) thirty-two bit register or memory location.
The inc instruction is more compact and often faster than the comparable add reg, 1 or add mem, 1 instruction. Indeed, the inc reg16 instruction is one byte long, so it turns out that two such instructions are shorter than the comparable add reg, 1 instruction; however, the two increment instructions will run slower on most modern members of the 80x86 family. 
The inc instruction is very important because adding one to a register is a very common operation. Incrementing loop control variables or indices into an array is a very common operation, perfect for the inc instruction. The fact that inc does not affect the carry flag is very important. This allows you to increment array indices without affecting the result of a multiprecision arithmetic operation ( see Chapter Nine for more details about multiprecision arithmetic).
6.5.1.3 The XADD Instruction
Xadd (Exchange and Add) is another 80486 (and later) instruction. It does not appear on the 80386 and earlier processors. This instruction adds the source operand to the destination operand and stores the sum in the destination operand. However, just before storing the sum, it copies the original value of the destination operand into the source operand. The following algorithm describes this operation: 

                xadd dest, source

                temp := dest

                dest := dest + source

                source := temp

The xadd sets the flags just as the add instruction would. The xadd instruction allows eight, sixteen, and thirty-two bit operands. Both source and destination operands must be the same size.
6.5.1.4 The AAA and DAA Instructions
The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instructions support BCD arithmetic. Beyond this chapter, this text will not cover BCD or ASCII arithmetic since it is mainly for controller applications, not general purpose programming applications. BCD values are decimal integer coded in binary form with one decimal digit (0..9) per nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O. nibble of the byte should contain zero. 
The aaa and daa instructions modify the result of a binary addition to correct it for ASCII or decimal arithmetic. For example, to add two BCD values, you would add them as though they were binary numbers and then execute the daa instruction afterwards to correct the results. Likewise, you can use the aaa instruction to adjust the result of an ASCII addition after executing an add instruction. Please note that these two instructions assume that the add operands were proper decimal or ASCII values. If you add binary (non-decimal or non-ASCII) values together and try to adjust them with these instructions, you will not produce correct results.
The choice of the name "ASCII arithmetic" is unfortunate, since these values are not true ASCII characters. A name like "unpacked BCD" would be more appropriate. However, Intel uses the name ASCII, so this text will do so as well to avoid confusion. However, you will often hear the term "unpacked BCD" to describe this data type.
Aaa (which you generally execute after an add, adc, or xadd instruction) checks the value in al for BCD overflow. It works according to the following basic algorithm: 
if ( (al and 0Fh) > 9 or (AuxC =1) ) then

        if (8088 or 8086) then 

                al := al + 6

        else 

                ax := ax + 6

        endif

        ah := ah + 1

        AuxC := 1               ;Set auxilliary carry

        Carry := 1              ; and carry flags.

else

        AuxC := 0               ;Clear auxilliary carry

        Carry := 0              ; and carry flags.

endif

al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly one decimal digit per byte in a string of numbers. This text will not deal with BCD or ASCII numeric strings, so you can safely ignore this instruction for now. Of course, you can use the aaa instruction any time you need to use the algorithm above, but that would probably be a rare situation.
The daa instruction functions like aaa except it handles packed BCD (binary code decimal) values rather than the one digit per byte unpacked values aaa handles. As for aaa, daa's main purpose is to add strings of BCD digits (with two digits per byte). The algorithm for daa is 
if ( (AL and 0Fh) > 9 or (AuxC = 1)) then

        al := al + 6

        AuxC := 1               ;Set Auxilliary carry.

endif

if ( (al > 9Fh) or (Carry = 1)) then

        al := al + 60h

        Carry := 1;             ;Set carry flag.

endif

6.5.2 The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS
The sub (subtract), sbb (subtract with borrow), dec (decrement), aas (ASCII adjust for subtraction), and das (decimal adjust for subtraction) instructions work as you expect. Their syntax is very similar to that of the add instructions: 

                sub     reg, reg

                sub     reg, mem

                sub     mem, reg

                sub     reg, immediate data

                sub     mem, immediate data

                sub     eax/ax/al, immediate data

                sbb forms are identical to sub.

                dec     reg

                dec     mem

                dec     reg16

                aas

                das

The sub instruction computes the value dest := dest - src. The sbb instruction computes dest := dest - src - C. Note that subtraction is not commutative. If you want to compute the result for dest := src - dest you will need to use several instructions, assuming you need to preserve the source operand).
One last subject worth discussing is how the sub instruction affects the 80x86 flags register. The sub, sbb, and dec instructions affect the flags as follows: 
· They set the zero flag if the result is zero. This occurs only if the operands are equal for sub and sbb. The dec instruction sets the zero flag only when it decrements the value one. 
· These instructions set the sign flag if the result is negative. 
· These instructions set the overflow flag if signed overflow/underflow occurs. 
· They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic. 
· They set the parity flag according to the number of one bits appearing in the result value. 
· The sub and sbb instructions set the carry flag if an unsigned overflow occurs. Note that the dec instruction does not affect the carry flag. 
The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII numbers with one decimal digit (in the range 0..9) per byte. You would use this instruction after a sub or sbb instruction on the ASCII value. This instruction uses the following algorithm: 

if ( (al and 0Fh) > 9 or AuxC = 1) then

        al := al - 6

        ah := ah - 1

        AuxC := 1       ;Set auxilliary carry

        Carry := 1      ; and carry flags.

else

        AuxC := 0       ;Clear Auxilliary carry

        Carry := 0      ; and carry flags.

endif

al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the following algorithm: 
if ( (al and 0Fh) > 9 or (AuxC = 1)) then

        al := al -6

        AuxC = 1

endif

if (al > 9Fh or Carry = 1) then

        al := al - 60h

        Carry := 1              ;Set the Carry flag.

endif

Since subtraction is not commutative, you cannot use the sub instruction as freely as the add instruction. The following examples demonstrate some of the problems you may encounter. 
; J := K - J

                mov     ax, K           ;This is a nice try, but it computes

                sub     J, ax           ; J := J - K, subtraction isn't

                                        ; commutative!

                mov     ax, K           ;Correct solution.

                sub     ax, J

                mov     J, ax

; J := J - (K + M) -- Don't forget this is equivalent to J := J - K - M

                mov     ax, K           ;Computes AX := K + M

                add     ax, M

                sub     J, ax           ;Computes J := J - (K + M)

                mov     ax, J           ;Another solution, though less

                sub     ax, K           ;Efficient

                sub     ax, M

                mov     J, ax

Note that the sub and sbb instructions, like add and adc, provide short forms to subtract a constant from an accumulator register (al, ax, or eax). For this reason, you should try to keep arithmetic operations in the accumulator registers as much as possible. The sub and sbb instructions also provide a shorter form when subtracting constants in the range -128..+127 from a memory location or register. The instruction will automatically sign extend an eight bit signed value to the necessary size before the subtraction occurs. See Appendix D for the details.
In practice, there really isn't a need for an instruction that subtracts a constant from a register or memory location - adding a negative value achieves the same result. Nevertheless, Intel provides a subtract immediate instruction.
After the execution of a sub instruction, the condition code bits (carry, sign, overflow, and zero) in the flags register contain values you can test to see if one of sub's operands is equal, not equal, less than, less than or equal, greater than, or greater than or equal to the other operand. See the cmp instruction for more details.
6.5.3 The CMP Instruction
The cmp (compare) instruction is identical to the sub instruction with one crucial difference - it does not store the difference back into the destination operand. The syntax for the cmp instruction is very similar to sub, the generic form is 
                cmp     dest, src

The specific forms are 
                cmp     reg, reg

                cmp     reg, mem

                cmp     mem, reg

                cmp     reg, immediate data

                cmp     mem, immediate data

                cmp     eax/ax/al, immediate data

The cmp instruction updates the 80x86's flags according to the result of the subtraction operation (dest - src). You can test the result of the comparison by checking the appropriate flags in the flags register. For details on how this is done, see "The "Set on Condition" Instructions" and "The Conditional Jump Instructions".
Usually you'll want to execute a conditional jump instruction after a cmp instruction. This two step process, comparing two values and setting the flag bits then testing the flag bits with the conditional jump instructions, is a very efficient mechanism for making decisions in a program. 
Probably the first place to start when exploring the cmp instruction is to take a look at exactly how the cmp instruction affects the flags. Consider the following cmp instruction: 


cmp
ax, bx

This instruction performs the computation ax-bx and sets the flags depending upon the result of the computation. The flags are set as follows:
Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero result. Hence, you can use the zero flag to test for equality or inequality. 
S: The sign flag is set to one if the result is negative. At first glance, you might think that this flag would be set if ax is less than bx but this isn't always the case. If ax=7FFFh and bx=-1 (0FFFFh) subtracting ax from bx produces 8000h, which is negative (and so the sign flag will be set). So, for signed comparisons anyway, the sign flag doesn't contain the proper status. For unsigned operands, consider ax=0FFFFh and bx=1. Ax is greater than bx but their difference is 0FFFEh which is still negative. As it turns out, the sign flag and the overflow flag, taken together, can be used for comparing two signed values. 
O: The overflow flag is set after a cmp operation if the difference of ax and bx produced an overflow or underflow. As mentioned above, the sign flag and the overflow flag are both used when performing signed comparisons. 
C: The carry flag is set after a cmp operation if subtracting bx from ax requires a borrow. This occurs only when ax is less than bx where ax and bx are both unsigned values. 
The cmp instruction also affects the parity and auxiliary carry flags, but you'll rarely test these two flags after a compare operation. Given that the cmp instruction sets the flags in this fashion, you can test the comparison of the two operands with the following flags: 


cmp Oprnd1, Oprnd2

	Condition Code Settings After CMP

	Unsigned operands:
	Signed operands:

	Z: equality/inequality
	Z: equality/inequality

	C: Oprnd1 < Oprnd2 (C=1) Oprnd1 >= Oprnd2 (C=0)
	C: no meaning 

	S: no meaning
	S: see below

	O: no meaning
	O: see below


For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:
If ((S=0) and (O=1)) or ((S=1) and (O=0)) then Oprnd1 < Oprnd2 when using a signed comparison.
If ((S=0) and (O=0)) or ((S=1) and (O=1)) then Oprnd1 >= Oprnd2 when using a signed comparison.
To understand why these flags are set in this manner, consider the following examples: 
        Oprnd1        minus     Oprnd2          S       O

        ------                  ------          -       -

        0FFFF (-1)      -       0FFFE (-2)      0       0

        08000           -       00001           0       1

        0FFFE (-2)      -       0FFFF (-1)      1       0

        07FFF (32767)   -       0FFFF (-1)      1       1

Remember, the cmp operation is really a subtraction, therefore, the first example above computes (-1)-(-2) which is (+1). The result is positive and an overflow did not occur so both the S and O flags are zero. Since (S xor O) is zero, Oprnd1 is greater than or equal to Oprnd2.
In the second example, the cmp instruction would compute (-32768)-(+1) which is (-32769). Since a 16-bit signed integer cannot represent this value, the value wraps around to 7FFFh (+32767) and sets the overflow flag. Since the result is positive (at least within the confines of 16 bits) the sign flag is cleared. Since (S xor O) is one here, Oprnd1 is less than Oprnd2. 
In the third example above, cmp computes (-2)-(-1) which produces (-1). No overflow occurred so the O flag is zero, the result is negative so the sign flag is one. Since (S xor O) is one, Oprnd1 is less than Oprnd2. 
In the fourth (and final) example, cmp computes (+32767)-(-1). This produces (+32768), setting the overflow flag. Furthermore, the value wraps around to 8000h (-32768) so the sign flag is set as well. Since (S xor O) is zero, Oprnd1 is greater than or equal to Oprnd2. 
6.5.4 The CMPXCHG, and CMPXCHG8B Instructions
The cmpxchg (compare and exchange) instruction is available only on the 80486 and later processors. It supports the following syntax: 
                cmpxchg reg, reg

                cmpxchg mem, reg

The operands must be the same size (eight, sixteen, or thirty-two bits). This instruction also uses the accumulator register; it automatically chooses al, ax, or eax to match the size of the operands.
This instruction compares al, ax, or eax with the first operand and sets the zero flag if they are equal. If so, then cmpxchg copies the second operand into the first. If they are not equal, cmpxchg copies the first operand into the accumulator. The following algorithm describes this operation: 
        cmpxchg         operand1, operand2

        if ({al/ax/eax} = operand1) then

                zero := 1               ;Set the zero flag

                operand1 := operand2

        else

                zero := 0               ;Clear the zero flag

                {al/ax/eax} := operand1

        endif

Cmpxchg supports certain operating system data structures requiring atomic operations and semaphores. Of course, if you can fit the above algorithm into your code, you can use the cmpxchg instruction as appropriate.
Note: unlike the cmp instruction, the cmpxchg instruction only affects the 80x86 zero flag. You cannot test other flags after cmpxchg as you could with the cmp instruction.
The Pentium processor supports a 64 bit compare and exchange instruction - cmpxchg8b. It uses the syntax: 
                cmpxchg8b ax, mem64

This instruction compares the 64 bit value in edx:eax with the memory value. If they are equal, the Pentium stores ecx:ebx into the memory location, otherwise it loads edx:eax with the memory location. This instruction sets the zero flag according to the result. It does not affect any other flags.
6.5.5 The NEG Instruction 
The neg (negate) instruction takes the two's complement of a byte or word. It takes a single (destination) operation and negates it. The syntax for this instruction is 


neg
dest

It computes the following: 


dest := 0 - dest

This effectively reverses the sign of the destination operand. 
If the operand is zero, its sign does not change, although this clears the carry flag. Negating any other value sets the carry flag. Negating a byte containing -128, a word containing -32,768, or a double word containing -2,147,483,648 does not change the operand, but will set the overflow flag. Neg always updates the A, S, P, and Z flags as though you were using the sub instruction.
The allowable forms are: 
                neg     reg

                neg     mem

The operands may be eight, sixteen, or (on the 80386 and later) thirty-two bit values.
Some examples: 
; J := - J

                neg     J

; J := -K

                mov     ax, K
                neg     ax
	Instruction
	Meaning
	Notes

	AAA
	ASCII adjust AL after addition
	used with unpacked binary coded decimal

	AAD
	ASCII adjust AX before division
	8086/8088 datasheet documents only base 10 version of the AAD instruction (opcode 0xD5 0x0A), but any other base will work. Later Intel's documentation has the generic form too. NEC V20 and V30 (and possibly other NEC V-series CPUs) always use base 10, and ignore the argument, causing a number of incompatibilities

	AAM
	ASCII adjust AX after multiplication
	Only base 10 version is documented, see notes for AAD

	AAS
	ASCII adjust AL after subtraction
	

	ADC
	Add with carry
	destination := destination + source + carry_flag

	ADD
	Add
	

	AND
	Logical AND
	

	CALL
	Call procedure
	

	CBW
	Convert byte to word
	

	CLC
	Clear carry flag
	

	CLD
	Clear direction flag
	

	CLI
	Clear interrupt flag
	

	CMC
	Complement carry flag
	

	CMP
	Compare operands
	

	CMPSB
	Compare bytes in memory
	

	CMPSW
	Compare words
	

	CWD
	Convert word to doubleword
	

	DAA
	Decimal adjust AL after addition
	(used with packed binary coded decimal)

	DAS
	Decimal adjust AL after subtraction
	

	DEC
	Decrement by 1
	

	DIV
	Unsigned divide
	

	ESC
	Used with floating-point unit
	

	HLT
	Enter halt state
	

	IDIV
	Signed divide
	

	IMUL
	Signed multiply
	

	IN
	Input from port
	

	INC
	Increment by 1
	

	INT
	Call to interrupt
	

	INTO
	Call to interrupt if overflow
	

	IRET
	Return from interrupt
	

	Jxx
	Jump if condition
	(JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ)

	JMP
	Jump
	

	LAHF
	Load flags into AH register
	

	LDS
	Load pointer using DS
	

	LEA
	Load Effective Address
	

	LES
	Load ES with pointer
	

	LOCK
	Assert BUS LOCK# signal
	(for multiprocessing)

	LODSB
	Load signed byte
	

	LODSW
	Load signed word
	

	LOOP/LOOPx
	Loop control
	(LOOPE, LOOPNE, LOOPNZ, LOOPZ)

	MOV
	Move
	

	MOVSB
	Move byte from string to string
	

	MOVSW
	Move word from string to string
	

	MUL
	Unsigned multiply
	

	NEG
	Two's complement negation
	

	NOP
	No operation
	opcode (0x90) equivalent to XCHG EAX, EAX

	NOT
	Negate the operand, logical NOT
	

	OR
	Logical OR
	

	OUT
	Output to port
	

	POP
	Pop data from stack
	POP CS (opcode 0x0F) works only on 8086/8088. Later CPUs use 0x0F as a prefix for newer instructions.

	POPF
	Pop data into flags register
	

	PUSH
	Push data onto stack
	

	PUSHF
	Push flags onto stack
	

	RCL
	Rotate left (with carry)
	

	RCR
	Rotate right (with carry)
	

	REPxx
	Repeat MOVS/STOS/CMPS/LODS/SCAS
	(REP, REPE, REPNE, REPNZ, REPZ)

	RET
	Return from procedure
	

	RETN
	Return from near procedure
	

	RETF
	Return from far procedure
	

	ROL
	Rotate left
	

	ROR
	Rotate right
	

	SAHF
	Store AH into flags
	

	SAL
	Shift Arithmetically left (signed shift left)
	

	SAR
	Shift Arithmetically right (signed shift right)
	

	SBB
	Subtraction with borrow
	

	SCASB
	Compare byte string
	

	SCASW
	Compare word string
	

	SHL
	Shift left (unsigned shift left)
	

	SHR
	Shift right (unsigned shift right)
	

	STC
	Set carry flag
	

	STD
	Set direction flag
	

	STI
	Set interrupt flag
	

	STOSB
	Store byte in string
	

	STOSW
	Store word in string
	

	SUB
	Subtraction
	

	TEST
	Logical compare (AND)
	

	WAIT
	Wait until not busy
	Waits until BUSY# pin is inactive (used with floating-point unit)

	XCHG
	Exchange data
	

	XLAT
	Table look-up translation
	

	XOR
	Exclusive OR
	


UNIT III
MICROPROCESSOR PERIPHERAL INTERFACING
 DMA Controller Features

· General-purpose direct-memory access (DMA) controller 

· Up to 16 DMA channels 

· Supports both synchronous and asynchronous DMA transfers 

· Designed for peripheral component interconnect (PCI) and other central processing unit (CPU) bus systems 

DMA Controller Block Diagram

Figure 1 shows the block diagram for the DMA controller mega function.

	Figure 1. DMA Controller Block Diagram
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DMA Controller Description

The DMA controller megafunction is designed for data transfer in different system environments. Two module types—type 0 and type 1—are provided, and the user can choose the number of each module type. Type 0 modules are designed to transfer data residing on the same bus, and Type 1 modules are designed to transfer data between two different buses. Each module can support up to 4 DMA channels; the megafunction supports up to 16 total DMA channels.

Each DMA channel can be programmed for various features, such as transfer size, synchronized and unsynchronized transfer control, transfer priority, interrupt generation, memory and I/O address space, and address change direction. This megafunction is designed to work with 32-bit and 64-bit bus systems, including the PCI bus, PowerPC bus, and other CPU host buses. It can also be integrated with other mega functions to form a complete functional block.

This mega function is available in Altera Hardware Description Language (AHDL), Verilog HDL, VHDL, and netlist format.

8259A PROGRAMMABLE INTERRUPT CONTROLLER

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a single a5V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and real time overhead in handling multi-level priority interrupts.

It has several modes, permitting optimization for a variety of system requirements. The 8259A is fully upward compatible with the Intel 8259. Software originally written for the 8259 will operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered and Edge Triggered).

[image: image15.emf]
FUNCTIONAL DESCRIPTION

Interrupts in Microcomputer Systems Microcomputer system design requires that I.O devices such as keyboards, displays, sensors and other components receive servicing in a an efficient manner so that large amounts of the total system tasks can be assumed by the microcomputer with little or no effect on throughput. The most common method of servicing such devices is the Polled approach. This is where the processor must test each device in sequence and in effect “ask” each one if it needs servicing. It is easy to see that a large portion of the main program is looping through this continuous polling cycle and that such a method would have a serious detrimental effect on system throughput, thus limiting the tasks that could be assumed by the microcomputer and reducing the cost effectiveness of using such devices.

A more desirable method would be one that would allow the microprocessor to be executing its main program and only stop to service peripheral devices when it is told to do so by the device itself. In effect, the method would provide an external asynchronous input that would inform the processor that it should complete whatever instruction that is currently being executed and fetch a new routine that will service the requesting device. Once this servicing is complete, however, the processor would resume exactly where it left off.

This method is called Interrupt. It is easy to see that system throughput would drastically increase, and thus more tasks could be assumed by the microcomputer to further enhance its cost effectiveness. The Programmable Interrupt Controller (PIC) functions as an overall manager in an Interrupt-Driven system environment. It accepts requests from the peripheral equipment, determines which of the incoming requests is of the highest importance (priority), ascertains whether the incoming request has a higher priority value than the level currently being serviced, and issues an interrupt to the CPU based on this determination. Each peripheral device or structure usually has a special program or ``routine'' that is associated with its specific functional or operational requirements; this is referred to as a ``service routine''. The PIC, after issuing an Interrupt to the CPU, must somehow input information into the CPU that can ``point'' the Program Counter to the service routine associated with the requesting device. This ``pointer'' is an address in a vectoring table and will often be referred to, in this document, as vectoring data.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt levels which are requesting service; and the ISR is used to store all the interrupt levels which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the IRR. Masking of a higher priority input will not affect the

interrupt request lines of lower quality. 

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to be fully compatible with the 8080A, 8085A and 8086 input levels.

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The format of this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to interface the 8259A to the system Data Bus. Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept OUTput commands from the CPU. It contains the Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers which store the various control formats for device operation. This function block also allows the status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip will occur unless the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write control words (ICWs and OCWs) to the 8259A.

RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt level onto the Data Bus.

A0

This input signal is used in conjunction with WR and RD signals to write commands into the various command registers, as well as reading the various status registers of the chip. This line can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and the interrupt routine addressing capability. The latter allows direct or indirect jumping to the specific interrupt routine requested without any polling of the interrupting devices. The normal sequence of events during an interrupt depends on the type of CPU being used. 

The events occur as follows in an MCS-80/85 system:

1. One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting the corresponding IRR bit(s).

2. The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the corresponding IRR bit is reset. The 8259A will also release a CALL instruction code (11001101) onto the 8-bit Data Bus through its D7±0 pins.

5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A from the CPU group.

6. These two INTA pulses allow the 8259A to release its preprogrammed subroutine address onto the Data Bus. The lower 8-bit address is released at the first INTA pulse and the higher 8-bit address is released at the second INTA pulse.

7. This completes the 3-byte CALL instruction released by the 8259A. In the AEOI mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt sequence. The events occurring in an 8086 system are the same until step 4.

8. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus during this cycle.

9. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an 8-bit pointer onto the Data Bus where it is read by the CPU.

10. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt subroutine. If no interrupt request is present at step 4 of either sequence (i.e., the request was too short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS lines will look like an interrupt level 7 was requested. When the 8259A PIC receives an interrupt, INT becomes active and an interrupt acknowledge cycle is started. If a higher priority interrupt occurs between the two INTA pulses, the INT line goes inactive immediately after the second INTA pulse. After an unspecified amount of time the INT line is activated again to signify the higher priority interrupt waiting for service. This inactive time is not specified and can vary between parts. The designer should be aware of this consideration when designing a system which uses the 8259A. It is recommended that proper asynchronous design techniques be followed.

The INTEL 8279 is specially developed for interfacing keyboard and display devices to 8085/8086/8088 microprocessor based system. The important features of 8279 are,
1. Simultaneous keyboard and display operations. 

2. Scanned keyboard mode. 

3. Scanned sensor mode. 

4. 8-character keyboard FIFO. 

5. 1 6-character display. 

6. Right or left entry 1 6-byte display RAM. 

7. Programmable scan timing. 

Keyboard section:
· The keyboard section consists of eight return lines RL0 - RL7 that can be used to form the columns of a keyboard matrix. 
· It has two additional input: shift and control/strobe. The keys are automatically debounced. 
· The two operating modes of keyboard section are 2-key lockout and N-key rollover. 

· In the 2-key lockout mode, if two keys are pressed simultaneously, only the first key is recognized. 
· In the N-key rollover mode simultaneous keys are recognized and their codes are stored in FIFO. 

· The keyboard sections also have an 8 x 8 FIFO (First In First Out) RAM. 
· The FIFO can store eight key codes in the scan keyboard mode. The status of the shift key and control key are also stored along with key code. The 8279 generate an interrupt signal when there is an eFIFO. 
[image: image16.png]RESET

ax—/ oeon,
RS A, o
4Ll 1
Dus 10 Control F1porsansor
naites RAM Suater
3
ot
FIRO/Sensar
o
‘l sean
Coumter Returs
2, H swifT
e cNTLST





Block diagram of 8279:
· The functional block diagram of 8279 is shown. 
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· In sensor matrix mode the condition (i.e., open/close status) of 64 switches is stored in FIFO RAM. If the condition of any of the switches changes then the 8279 asserts IRQ as high to interrupt the processor. 

Display section:
· The display section has eight output lines divided into two groups A0-A3 and B0-B3. 

· The output lines can be used either as a single group of eight lines or as two groups of four lines, in conjunction with the scan lines for a multiplexed display. 
· The output lines are connected to the anodes through driver transistor in case of common cathode 7-segment LEDs. 
· The cathodes are connected to scan lines through driver transistors. 
· The display can be blanked by BD (low) line. 
· The display section consists of 16 x 8 display RAM. The CPU can read from or write into any location of the display RAM. 

Scan section:
· The scan section has a scan counter and four scan lines, SL0 to SL3. 

· In decoded scan mode, the output of scan lines will be similar to a 2-to-4 decoder. 
· In encoded scan mode, the output of scan lines will be binary count, and so an external decoder should be used to convert the binary count to decoded output. 
· The scan lines are common for keyboard and display. 
· The scan lines are used to form the rows of a matrix keyboard and also connected to digit drivers of a multiplexed display, to turn ON/OFF. 

CPU interface section:
· The CPU interface section takes care of data transfer between 8279 and the processor. 

· This section has eight bidirectional data lines DB0 to DB7 for data transfer between 8279 and CPU. 

· It requires two internal address A =0 for selecting data buffer and A = 1 for selecting control register of8279. 
· The control signals WR (low), RD (low), CS (low) and A0 are used for read/write to 8279. 
· It has an interrupt request line IRQ, for interrupt driven data transfer with processor. 

· The 8279 require an internal clock frequency of 100 kHz. This can be obtained by dividing the input clock by an internal prescaler. 
· The RESET signal sets the 8279 in 16-character display with two -key lockout keyboard modes. 
Serial Peripheral Interface Bus

Operation
The SPI bus can operate with a single master device and with one or more slave devices.

If a single slave device is used, the SS pin may be fixed to logic low if the slave permits it. Some slaves require the falling edge (high→low transition) of the slave select to initiate an action such as the Maxim MAX1242 ADC, which starts conversion on said transition. With multiple slave devices, an independent SS signal is required from the master for each slave device.

Most slave devices have tri-state outputs so their MISO signal becomes high impedance ("disconnected") when the device is not selected. Devices without tri-state outputs can't share SPI bus segments with other devices; only one such slave could talk to the master, and only its chip select could be activated.

Data transmission
A typical hardware setup using two shift registers to form an inter-chip circular buffer
To begin a communication, the master first configures the clock, using a frequency less than or equal to the maximum frequency the slave device supports. Such frequencies are commonly in the range of 1–70 MHz.

The master then pulls the slave select low for the desired chip. If a waiting period is required (such as for analog-to-digital conversion) then the master must wait for at least that period of time before starting to issue clock cycles.

During each SPI clock cycle, a full duplex data transmission occurs:

· the master sends a bit on the MOSI line; the slave reads it from that same line 

· the slave sends a bit on the MISO line; the master reads it from that same line 

Not all transmissions require all four of these operations to be meaningful but they do happen.

Transmissions normally involve two shift registers of some given word size, such as eight bits, one in the master and one in the slave; they are connected in a ring. Data are usually shifted out with the most significant bit first, while shifting a new least significant bit into the same register. After that register has been shifted out, the master and slave have exchanged register values. Then each device takes that value and does something with it, such as writing it to memory. If there is more data to exchange, the shift registers are loaded with new data and the process repeats.

Transmissions may involve any number of clock cycles. When there are no more data to be transmitted, the master stops toggling its clock. Normally, it then deselects the slave.

Transmissions often consist of 8-bit words, and a master can initiate multiple such transmissions if it wishes/needs. However, other word sizes are also common, such as 16-bit words for touchscreen controllers or audio codecs, like the TSC2101 from Texas Instruments; or 12-bit words for many digital-to-analog or analog-to-digital converters.

Every slave on the bus that hasn't been activated using its slave select line must disregard the input clock and MOSI signals, and must not drive MISO. The master must select only one slave at a time.

Clock polarity and phase

A timing diagram showing clock polarity and phase

In addition to setting the clock frequency, the master must also configure the clock polarity and phase with respect to the data. Freescale's SPI Block Guide[1] names these two options as CPOL and CPHA respectively, and most vendors have adopted that convention.

The timing diagram is shown to the right. The timing is further described below and applies to both the master and the slave device.

· At CPOL=0 the base value of the clock is zero 

· For CPHA=0, data are captured on the clock's rising edge (low→high transition) and data are propagated on a falling edge (high→low clock transition). 

· For CPHA=1, data are captured on the clock's falling edge and data are propagated on a rising edge. 

· At CPOL=1 the base value of the clock is one (inversion of CPOL=0) 

· For CPHA=0, data are captured on clock's falling edge and data are propagated on a rising edge. 

· For CPHA=1, data are captured on clock's rising edge and data are propagated on a falling edge. 

That is, CPHA=0 means sample on the leading (first) clock edge, while CPHA=1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling. Note that with CPHA=0, the data must be stable for a half cycle before the first clock cycle. For all CPOL and CPHA modes, the initial clock value must be stable before the chip select line goes active.

Also, note that "data is read" in this document more typically means "data may be read". The MOSI and MISO signals are usually stable (at their reception points) for the half cycle until the next clock transition. SPI master and slave devices may well sample data at different points in that half cycle.

UNIT IV 8 BIT MICROCONTROLLER- H/W ARCHITECTURE, INSTRUCTION

SET AND PROGRAMMING

	
	

	 
	8051 Family

	 
	 

	 
	The 8051 is just one of the MCS-51 family of microcontrollers developed by Intel. The design of each of the MCS-51 microcontrollers are more or less the same. The differences between each member of the family is the amount of on-chip memory and the number of timers, as detailed in the table below.

	 
	 

	 
	Microcontroller
On-chip Code Memory
On-chip Data Memory
Timers
8051

4K ROM

128 bytes

2

8031

0

128 bytes

2

8751

4K EPROM

128 bytes

2

8052

8K ROM

256 bytes

3

8032

0

256 bytes

3

8752

8K EPROM

256 bytes

3



	 
	 

	 
	Each chip also contains:

	 
	· four 8-bit input/output (I/0) ports 

· serial interface 

· 64K external code memory space 

· 64K external data memory space 

· Boolean processor 

· 210 bit-addressable locations 

· 4us multiply/divide 
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	The diagram above shows the 8051 pinout. The chip is a 40-pin package. 

	 
	 

	 
	Port 0 - pins 32 to 39 make up the 8-bit I/O port 0. However, if external memory is used, these lines are used as a multiplexed address and data bus.

	 
	Port 1 - pins 1 to 8 make up the 8-bit I/O port 1.

	 
	Port 2 - pins 21 to 28 make up the 8-bit I/O port 2. However, if external memory is used, these lines make up the high-byte of the external address (A8 to A15).

	 
	Port 3 - pins 10 to 17 make up the 8-bit I/O port 3. However, each of these eight pins also has an alternate function, as detailed in the table below.

	 
	 

	 
	Pin
Name
Bit Address
Function
P3.0

RXD

B0H

Receive data for serial port

P3.1

TXD

B1H

Transmit data for serial port

P3.2

INT0-bar

B2H

External interrupt 0

P3.3

INT1-bar

B3H

External interrupt 1

P3.4

T0

B4H

Timer/counter 0 external input

P3.5

T1

B5H

Timer/counter 1 external input

P3.6

WR-bar

B6H

External data memory write strobe

P3.7

RD-bar

B7H

External data memory read strobe



	 
	 

	 
	RST - the reset input is on pin 9. This pin is used for resetting the 8051 (ie; loading the PC with the correct startup value).

	 
	EA-bar - the external access, on pin 31, is used for enabling or disabling the on-chip ROM. When tied high (5V), the 8051 executes instructions in internal ROM when executing in the lower 4K (8K for the 8052) of memory. If tied low the 8051 will always execute instructions in external memory. The 8031 and 8032 should always have pin 31 tied low as there is no internal code memory.

	 
	ALE - the address latch enable is on pin 30. The ALE is used for latching the low byte of the address into an external register. We will deal with this at a later date.

	 
	PSEN-bar - the program store enable is an output signal on pin 29. This signal is used for fetching instructions from external code memory. We will also deal with this at a later date.

	 
	 

	 
	 


	 
	8051 Memory Organisation

	 
	 

	 
	Internal ROM

	 
	The 8051 has 4K (4096 locations) of on-chip ROM. This is used for storing the system program. 212 = 4096, therefore the internal ROM address bus is 12 bits wide and internal ROM locations go from 000H to FFFH.

	 
	 

	 
	 

	 
	Internal RAM

	 
	 

	 
	There are 256 bytes of internal RAM on the 8051. 28 = 256, therefore the internal RAM address bus is 8 bits wide and internal RAM locations go from 00H to FFH.

	 
	 

	 
	The first 128 locations (00H to 7FH) of internal RAM are used by the programmer for storing data while the second 128 locations (80H to FFH) are the Special Function Registers (SFRs) which we will deal with later. 

	 
	 

	 
	The diagram below is a summary of the 8051 on-chip RAM.

	 
	 

	 
	 

	 
	Register Banks

	 
	There are four register banks from 00H to 1FH. On power-up, registers R0 to R7 are located at 00H to 07H. However, this can be changed so that the register set points to any of the other three banks (if you change to Bank 2, for example, R0 to R7 is now located at 10H to 17H).

	 
	 

	 
	Bit-addressable Locations

	 
	The 8051 contains 210 bit-addressable locations of which 128 are at locations 20H to 2FH while the rest are in the SFRs. Each of the 128 bits from 20H to 2FH have a unique number (address) attached to them, as shown in the table above. The 8051 instruction set allows you to set or reset any single bit in this section of RAM.
With the general purpose RAM from 30H to 7FH and the register banks from 00H to 1FH, you may only read or write a full byte (8 bits) at these locations.
However, with bit-addressable RAM (20H to 2FH) you can read or write any single bit in this region by using the unique address for that bit. We will later see that this is a very powerful feature.

	 
	 

	 
	Special Function Registers (SFRs)

	 
	Locations 80H to FFH contain the special function registers. As you can see from the diagram above, not all locations are used by the 8051 (eleven locations are blank). These extra locations are used by other family members (8052, etc.) for the extra features these microcontrollers possess. 

	 
	Also note that not all SFRs are bit-addressable. Those that are have a unique address for each bit.

	 
	We will deal with each of the SFRs as we progress through the course, but for the moment you should take note of the accumulator (ACC) at address E0H and the four port registers at addresses 80H for P0, 90h for P1, A0 for P2 and B0 for P3.

	 
	We will later see how easy this makes ready from and writing to any of the four ports.

	 
	 

	 
	The Missing Registers

	 
	The two registers not shown in the table above are the instruction register and the program counter. These two very important registers are not placed in RAM because it is not necessary to make them directly accessible to the programmer. The instruction register gets its data from the execution cycle while the program counter is manipulated by the operation of these instructions. 

	 
	 

	 
	 


	 
	Instruction Set Summary

	 
	 

	 
	Instructions tell the processor which operation to carry out. For example, MOV A, #5EH tells the processor to move the data 5EH to the accumulator.

	 
	Instructions result in the processor performing some operation on some data (the data being #5EH in the example above). The instruction above is an example of what's known as immediate addressing. The reason for this is because the data immediately follows the instruction in code memory.

	 
	However, it is not always adequate to store the data in code memory itself. If we needed to read the information from a keyboard, for example, we would need to use something other than immediate addressing. 

	 
	There are eight different addressing modes in the 8051.

	 
	 

	 
	Opcode and Operand

	 
	The first byte of an instruction is known as the opcode (operation code) because this is the byte that is decoded by the processor - from this code the processor can work out what operation it must perform.

	 
	For a one-byte instruction there is only the opcode.

	 
	For a two-byte instruction the second byte is the operand. The operand can be data or an 8-bit address.

	 
	For a three-byte instruction the second and third bytes make up the operand. A two-byte operand is usually a 16-bit address, as we shall see when we look at long addressing.

	 
	 

	 
	Addressing Modes

	 
	The eight addressing modes are:

	 
	· Immediate 

· Register 

· Direct 

· Indirect 

· Relative 

· Absolute 

· Long 

· Indexed 

	 
	 

	 
	Immediate Addressing

	 
	If the operand is a constant then it can be stored in memory immediately after the opcode. Remember, values in code memory (ROM) do not change once the system has been programmed and is in use in the everyday world. Therefore, immediate addressing is only of use when the data to be read is a constant. For example, if your program needed to perform some calculations based on the number of weeks in the year, you could use immediate addressing to load the number 52 (34H) into a register and then perform arithmetic operations upon this data.

	 
	MOV R0, #34

	 
	The above instruction is an example of immediate addressing. It moves the data 34H into R0. The assembler must be able to tell the difference between an address and a piece of data. The has symbol (#) is used for this purpose (whenever the assembler sees # before a number it knows this is immediate addressing).

	 
	This is a two-byte instruction.

	 
	 

	 
	 

	 
	Register Addressing

	 
	Often we need to move data from a register into the accumulator so that we can perform arithmetic operations upon it. For example, we may wish to move the contents of R5 into the accumulator.

	 
	MOV A, R5

	 
	This is an example of register addressing. It moves data from R5 (in the currently selected register bank) into the accumulator.

	 
	ADD A, R6

	 
	The above is another example of register addressing. It adds the contents of R6 to the accumulator, storing the result in the accumulator. Note that in both examples the destination comes first. This is true of all instructions.

	 
	 

	 
	 

	 
	Direct Addressing

	 
	Direct addressing is used for accessing data in the on-chip RAM. Since there are 256 bytes of RAM (128 bytes general storage for the programmer and another 128 bytes for the SFRs). That means the addresses go from 00H to FFH, any of which can be stored in an 8-bit location.

	 
	MOV A, 67

	 
	The above instruction moves the data in location 67H into the accumulator. Note the difference between this and immediate addressing. Immediate addressing uses the data, which is immediately after the instruction. With direct addressing, the operand is an address. The data to be operated upon is stored in that address. The assembler realises this is an address and not data because there is no hash symbol before it.

	 
	ADD A, 06

	 
	The above instruction adds the contents of location 06H to the accumulator and stores the result in the accumulator. If the selected register bank is bank 0 then this instruction is the same as ADD A, R6.

	 
	 

	 
	 

	 
	Indirect Addressing

	 
	Register addressing and direct addressing both restrict the programmer to manipulation of data in fixed addresses. The address the instruction reads from (MOV A, 30H) or writes to (MOV 30H, A) cannot be altered while the program is running.

	 
	There are times when it is necessary to read and write to a number of contiguous memory locations. For example, if you had an array of 8-bit numbers stored in memory, starting at address 30H, you may wish to examine the contents of each number in the array (perhaps to find the smallest number). To do so, you would need to read location 30H, then 31H, then 32H and so on.

	 
	This can be achieved using indirect addressing. R0 and R1 may be used as pointer registers. We can use either one to store the current memory location and then use the indirect addressing instruction shown below.

	 
	MOV A, @Ri

	 
	where Ri is either R0 or R1.

	 
	Now, we can read the contents of location 30H through indirect addressing:

	 
	MOV R0, #30H
MOV A, @R0

	 
	The first instruction is an example of immediate addressing whereby the data 30H is placed in R0. The second instruction is indirect addressing. It moves the contents of location 30H into the accumulator. 

	 
	If we now wish to get the data in location 31H we use the following:

	 
	INC R0
MOV A, @R0

	 
	Once we see how to write a loop in assembly language, we will be able to read the entire contents of the array.

	 
	 

	 
	 

	 
	Relative Addressing

	 
	Relative addressing is used only with certain jump instructions. The system executes a jump by changing the contents of the PC to the address of the next instruction to be executed. For example, if we wished to jump to the instruction stored at location 4EH in code memory, the PC would be loaded with 4EH. Then, during the next execution cycle the contents of the PC (4EH) are placed on the address bus and the instruction at 4EH is retrieved.

	 
	A relative address (or offset) is an 8-bit signed value, which is added to the PC to form the address of the next instruction to be executed.

	 
	With 8-bit signed numbers, the MSB is used to determine whether the number is positive or negative. If the MSB is 0 then the number is positive, while if the MSB is 1 the number is negative.

	 
	The instruction below shows how to jump six locations ahead. 

	 
	SJMP 06H

	 
	SJUMP is an unconditional jump and is a 2-byte instruction. The number following it is an offset address. If this instruction were stored in code memory at locations 100H and 101H, as shown below: 

	 
	100H 80H
101H 06H 

	 
	The opcode for SJMP is 80H. The operand is the offset address. If this instruction were executed the PC would get the value 108H. This is what happens:

	 
	· The PC contains 100H, therefore the instruction 80H is read into the IR. 

· The instruction is decoded as the 2-byte SJMP instruction. 

· The PC is incremented so that the operand may be retrieved. 

· The operand is read from code memory and the PC is incremented again (because this is a 2-bye instruction). 

· The operand (06H) is added to the PC (102H + 06H = 108H). 

· The next instruction (at 108H) is executed. 

	 
	Once we deal with 2's compliment and how negative numbers are dealt with in the CPU, we will look at a backward jump.

	 
	The S in SJMP stands for short. The range of signed 8-bit numbers is -127 to 128. (Click here to see how signed numbers are stored in a microcontroller.) Therefore, using SJMP allows us to jump 127 locations forward or 128 locations backward. Hence the name short jump.

	 
	When writing assembly programs we do not need to calculate the offset when using SJMP. Instead, we use labels. If we wished to jump to the instruction at 108H we would simply label the instruction with an appropriate name, for example THERE. We would then write the assembly code SJMP THERE. The assembler does the work of replacing the label with the correct offset.

	 
	 

	 
	 

	 
	Absolute Addressing

	 
	Absolute addressing is only used with the ACALL and AJMP instructions.

	 
	ACALL - subroutine call (2 byte instruction)

	 
	AJMP - unconditional jump (2 byte instruction)

	 
	These instructions allow you to move to any instruction within the same 2K of memory.

	 
	We will look at the AJMP instruction only (at a later date, when we begin dealing with subroutines we will deal with the ACALL instruction).

	 
	 

	 
	The operation of the AJMP instruction is detailed below: 

	 
	AJMP address
(PC) <- (PC) + 2
(PC10-PC0) <- address10 - address0

	 
	 

	 
	Note that only the eleven least significant bits of the PC are altered. The five most significant bits remain the same. This means the AJMP will only allow you to jump to a location in the same 2K page as the instruction directly after the jump.

	 
	 

	 
	For example:

	 
	 

	 
	If the label THERE represents an instruction at address 0F46H and the instruction AJMP THERE is in memory at locations 0900H and 0901H, the assembler will encode the instruction as 

	 
	11100001 1st byte (A10 - A8 + opcode)
01000110 2nd byte (A7 - A0)

	 
	The underlined bits are the low-order 11 bits of the destination address, 0F46H = 0000111101000110B. The upper five bits in the program counter will not change when this instruction executes. Note that both the AJMP instruction and the destination are within the 2K page bounded by 0800H and 0FFFH, and therefore have the upper five address bits in common. 

	 
	 

	 
	 

	 
	Note: it is not important to remember the different kinds of addressing modes and which instructions belong to which mode. It is far more important to understand how to get data from one place to another and how to perform operations upon the data. You will never be asked to memorise a processor's instruction set. This will always be provided. However, as we shall see when we start writing programs, it is important to be able to use the instruction set.

	 
	Most of our early programs will deal with moving data into and out of the accumulator, performing arithmetic operations and jumping to different parts of the program.

	 
	 


	 
	The Special Function Registers (SFRs)

	 
	 

	 
	The SFRs are in locations 80H to FFH of the on-chip RAM. In the 8051 not all locations are used. These extra locations are used by other family members (8052, etc.) for the extra features these microcontrollers possess. 

	 
	 

	 
	 

	 
	As you can see, some of the SFRs are bit addressable, including the four ports P0, P1, P2 and P3.

	 
	 

	 
	Program Status Word (PSW)

	 
	The PSW is at location D0H and is bit addressable. The table below describes the function of each bit.

	 
	 

	 
	Bit
Symbol
Address
Description
PSW.7

CY

D7H

Carry flag

PSW.6

AC

D6H

Auxiliary carry flag

PSW.5

F0

D5H

Flag 0

PSW.4

RS1

D4H

Register bank select 1

PSW.3

RS0

D3H

Register bank select 0

PSW.2

OV

D2H

Overflow flag

PSW.1

--

D1H

Reserved

PSW.0

P

D0H

Even parity flag



	 
	 

	 
	 

	 
	Carry Flag

	 
	The carry flag has two functions.

	 
	· Firstly, it is used as the carry-out in 8-bit addition/subtraction. For example, if the accumulator contains FDH and we add 3 to the contents of the accumulator (ADD A, #3), the accumulator will then contain zero and the carry flag will be set. It is also set if a subtraction causes a borrow into bit 7. In other words, if a number is subtracted from another number smaller than it, the carry flag will be set. For example, if A contains 3DH and R3 contains 4BH, the instruction SUBB A, R3 will result in the carry bit being set (4BH is greater than 3DH). 

· The carry flag is also used during Boolean operations. For example, we could AND the contents of bit 3DH with the carry flag, the result being placed in the carry flag - ANL C, 3DH 

	 
	 

	 
	Register Bank Select Bits

	 
	Bits 3 and 4 of the PSW are used for selecting the register bank. Since there are four register banks, two bits are required for selecting a bank, as detailed below.

	 
	PSW.4

PSW.3

Register Bank

Address of Register Bank

0

0

0

00H to 07H

0

1

1

08H to 0FH

1

0

2

10H to 17H

1

1

3

18H to 1FH



	 
	 

	 
	For example, if we wished to activate register bank 3 we would use the following instructions - 

	 
	SETBRS1
SETB RS0 

	 
	 

	 
	If we then moved the contents of R4 to the accumulator (MOV A, R4) we would be moving the data from location 1CH to A.

	 
	 

	 
	 

	 
	Flag 0

	 
	Flag 0 is a general-purpose flag available to the programmer.

	 
	 

	 
	 

	 
	Parity Bit

	 
	The parity bit is automatically set or cleared every machine cycle to ensure even parity with the accumulator. The number of 1-bits in the accumulator plus the parity bit is always even. In other words, if the number of 1s in the accumulator is odd then the parity bit is set to make the overall number of bits even. If the number of 1s in the accumulator is even then the parity bit is cleared to make the overall number of bits even.

	 
	For example, if the accumulator holds the number 05H, this is 0000 0101 in binary => the accumulator has an even number of 1s, therefore the parity bit is cleared. If the accumulator holds the number F2H, this is 1111 0010 => the accumulator has an odd number of 1s, therefore the parity bit is set to make the overall number of 1s even.

	 
	As we shall see later in the course, the parity bit is most often used for detecting errors in transmitted data.

	 
	 

	 
	 

	 
	B Register

	 
	The B register is used together with the accumulator for multiply and divide operations.

	 
	· The MUL AB instruction multiplies the values in A and B and stores the low-byte of the result in A and the high-byte in B. 

· For example, if the accumulator contains F5H and the B register contains 02H, the result of MUL AB will be A = EAH and B = 01H. 

· The DIV AB instruction divides A by B leaving the integer result in A and the remainder by B. 

· For example, if the accumulator contains 07H and the B register contains 02H, the result of DIV AB will be A = 03H and B = 01H. 

The B register is also bit-addressable.

	 
	 

	 
	 

	 
	Stack Pointer

	 
	The stack pointer (SP) is an 8-bit register at location 81H. A stack is used for temporarily storing data. It operates on the basis of last in first out (LIFO). Putting data onto the stack is called "pushing onto the stack" while taking data off the stack is called "popping the stack."

	 
	The stack pointer contains the address of the item currently on top of the stack. On power-up or reset the SP is set to 07H. When pushing data onto the stack, the SP is first increased by one and the data is then placed in the location pointed to by the SP. When popping the stack, the data is taken off the stack and the SP is then decreased by one.

	 
	Since reset initialises the SP to 07H, the first item pushed onto the stack is stored at 08H (remember, the SP is incremented first, then the item is placed on the stack). However, if the programmer wishes to use the register banks 1 to 3, which start at address 08H, he/she must move the stack to another part of memory. The general purpose RAM starting at address 30H is a good spot to place the stack. To do so we need to change the contents of the SP.

	 
	· MOV SP, #2FH. 

	 
	Now, the first item to be pushed onto the stack will be stored at 30H.

	 
	 


Alphabetical List of Instructions 

· ACALL: Absolute Call

· ADD, ADDC: Add Accumulator (With Carry)

· AJMP: Absolute Jump

· ANL: Bitwise AND

· CJNE: Compare and Jump if Not Equal

· CLR: Clear Register

· CPL: Complement Register

· DA: Decimal Adjust

· DEC: Decrement Register

· DIV: Divide Accumulator by B

· DJNZ: Decrement Register and Jump if Not Zero

· INC: Increment Register

· JB: Jump if Bit Set

· JBC: Jump if Bit Set and Clear Bit

· JC: Jump if Carry Set

· JMP: Jump to Address

· JNB: Jump if Bit Not Set

· JNC: Jump if Carry Not Set

· JNZ: Jump if Accumulator Not Zero

· JZ: Jump if Accumulator Zero

· LCALL: Long Call

· LJMP: Long Jump

· MOV: Move Memory

· MOVC: Move Code Memory

· MOVX: Move Extended Memory

· MUL: Multiply Accumulator by B

· NOP: No Operation

· ORL: Bitwise OR

· POP: Pop Value From Stack

· PUSH: Push Value Onto Stack

· RET: Return From Subroutine

· RETI: Return From Interrupt

· RL: Rotate Accumulator Left

· RLC: Rotate Accumulator Left Through Carry

· RR: Rotate Accumulator Right

· RRC: Rotate Accumulator Right Through Carry

· SETB: Set Bit

· SJMP: Short Jump

· SUBB: Subtract From Accumulator With Borrow

· SWAP: Swap Accumulator Nibbles

· XCH: Exchange Bytes

· XCHD: Exchange Digits

· XRL: Bitwise Exclusive OR

· Undefined: Undefined Instruction

	                                                                        UNIT V

                                    SYSTEM DESIGN USING MICRO PROCESSOR &

                                                      MICROCONTROLLER
 TRAFFIC LIGHT CONTROL
The traffic light control using 8051 is represented in the following circuit diagram.
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Program
INCLUDE REG_52.PDF

NR
EQU
P3.5

NY
EQU
P3.4

NG
EQU
P3.3

SR
EQU
P1.2

SY
EQU
P1.3

SG
EQU
P1.4

ER
EQU
P1.5

EY
EQU
P1.6

EG
EQU
P1.7

WR
EQU
P3.7

WY
EQU
P1.0

WG
EQU
P1.1

CSEG     AT      0        ; RESET VECTOR

;---------==========----------==========---------=========---------

;              PROCESSOR INTERRUPT AND RESET VECTORS

;---------==========----------==========---------=========---------



ORG     00H    

; Reset



JMP     MAIN

;---------==========----------==========---------=========---------

MAIN:

   
MOV SP,#40H

   
MOV P1,#0FFH

   
MOV P3,#0FFH

TOP: 
CLR NR

   
CLR SR

   
CLR ER

   
CLR WY

   
SETB WG

   
CALL Y_DELAY

   
SETB NR

   
CLR NY

   
CLR WR

   
SETB WY

   
CALL Y_DELAY

   
SETB NY

   
CLR NG

   
CALL DELAY

   
CLR NY

   
SETB NG

   
CALL Y_DELAY

   
CLR NR

   
SETB NY

   
SETB SR

   
CLR SY

   
CALL Y_DELAY

   
SETB SY

   
CLR SG

   
CALL DELAY

   
CLR SY

   
SETB SG

   
CALL Y_DELAY

   
CLR SR

   
SETB SY

   
SETB ER

   
CLR EY

   
CALL Y_DELAY

   
SETB EY

   
CLR EG

   
CALL DELAY

   
CLR EY

   
SETB EG

   
CALL Y_DELAY

   
CLR ER

   
SETB EY

   
SETB WR

   
CLR WY

   
CALL Y_DELAY

   
SETB WY

   
CLR WG

   
CALL DELAY

   
AJMP TOP

;**********************************************************

DELAY:




MOV R3,#3FH

REPA3:
MOV R1,#0FFH

REPA2:
MOV R2,#0FFH

REPA1:
NOP




DJNZ R2,REPA1




DJNZ R1,REPA2




DJNZ R3,REPA3




RET

;  ---------==========----------==========---------=========---------

Y_DELAY:




MOV R3,#1AH

RQPA3:
MOV R1,#0FFH

RQPA2:
MOV R2,#0FFH

RQPA1:
NOP




DJNZ R2,RQPA1




DJNZ R1,RQPA2




DJNZ R3,RQPA3




RET

;**********************************************************

 
END

Washing machine control
AT89S51 microcontroller is used to control the process of washing cycle and to drive the external output devices such as water inlet valve, wash motor, water drain valve. The control strategy program for AT89S51 microcontroller is implemented by using assembly language. The objectives of this development are to design a simple control system using low cost microcontroller, to construct the functions of system using simple control system. The main abstraction of this research is to improve control and software systems of microcontroller based process simple control system in Electronics.
Abstract

Washing machines are a common feature today in the Indian household. The most important utility a

customer can derive from a washing machine is that he saves the effort he/she had to put in brushing,

agitating and washing the cloth. Most of the people wouldn’t have noticed (but can reason out very well)

that different type of cloth need different amount of washing time which depends directly on the type of

dirt, amount of dirt, cloth quality etc. The washing machines that are used today (the one not using fuzzy

logic control) serves all the purpose of washing, but which cloth needs what amount of agitation time is a

business which has not been dealt with properly. In most of the cases either the user is compelled to give

all the cloth same agitation or is provided with a restricted amount of control. The thing is that the washing

machines used are not as automatic as they should be and can be. This paper aims at presenting the

idea of controlling the washing time using fuzzy logic control. The paper describes the procedure that can

be used to get a suitable washing time for different cloths. The process is based entirely on the principle

of taking non-precise inputs from the sensors, subjecting them to fuzzy arithmetic and obtaining a crisp

value of the washing time. It is quite clear from the paper itself that this method can be used in practice to

further automate the washing machines. Never the less, this method, though with much larger number of

input parameters and further complex situations, is being used by the giants like LG and Samsung.

Problem Definition

When one uses a washing machine, the person generally select the length of wash time based on the

amount of clothes he/she wish to wash and the type and degree of dirt cloths have. To automate this

process, we use sensors to detect these parameters (i.e. volume of clothes, degree and type of dirt). The

wash time is then determined from this data. Unfortunately, there is no easy way to formulate a precise

mathematical relationship between volume of clothes and dirt and the length of wash time required.

Consequently, this problem has remained unsolved until very recently. Conventionally, people simply set

wash times by hand and from personal trial and error experience. Washing machines were not as

automatic as they could be. The sensor system provides external input signals into the machine from

which decisions can be made. It is the controller's responsibility to make the decisions and to signal the

outside world by some form of output. Because the input/output relationship is not clear, the design of a

washing machine controller has not in the past lent itself to traditional methods of control design. We

address this design problem using fuzzy logic. Fuzzy logic has been used because a fuzzy logic

controlled washing machine controller gives the correct wash time even though a precise model of the

input/output relationship is not available.
Details about the Problem

The problem in this paper has been simplifi ed by using only two variables. The two inputs are:

1. Degree of dirt

2. Type of dirt

Figure 1 shows the basic approach to the problem. The fuzzy controller takes two inputs (as stated for

simplification), processes the information and outputs a wash time. How to get these two inputs can be

left to the sensors (optical, electrical or any type). The working of the sensors is not a matter of concern in

this paper. We assume that we have these inputs at our hand. Anyway the two stated points need a bit of

introduction which follows. The degree of dirt is determined by the transparency of the wash water. The

dirtier the clothes, less transparent the water being analyzed by the sensors is. On the other hand, type of

dirt is determined by the time of saturation, the time it takes to reach saturation. Saturation is a point, at

which there is no more appreciable change in the color of the water. Degree of dirt determines how much

dirty a cloth is. Where as Type of dirt determines the quality of dirt. Greasy cloths, for example, take

longer for water transparency to reach transparency because grease is less soluble in water than other

forms of dirt. Thus a fairly straight forward sensor system can provide us the necessary input for our fuzzy

controller.
[image: image20.emf]
Figure 1 Basic block diagram of the process

Details about the set applied
Before the details of the fuzzy controller are dealt with, the range of possible values for the input and

output variables are determined. These (in language of Fuzzy Set theory) are the membership functions

used to map the real world measurement values to the fuzzy values, so that the operations can be

applied on them. Figure 2 shows the labels of input and output variables and their associated

membership functions. Values of the input variables degree_of_dirt and type_of_dirt are normalized

range -1 to 100) over the domain of optical sensor.

The decision which the fuzzy controller makes is derived from the rules which are stored in the database.

These are stored in a set of rules. Basically the rules are if-then statements that are intuitive and easy to

understand, since they are nothing but common English statements. Rules used in this paper are derived

from common sense, data taken from typical home use, and experimentation in a controlled environment.

The sets of rules used here to derive the output are:

1. If dirtness_of_clothes is Large and type_of_dirt is Greasy then wash_time is VeryLong;

2. If dirtness_of_clothes is Medium and type_of_dirt is Greasy then wash_time is Long;

3. If dirtness_of_clothes is Small and type_of_dirt is Greasy then wash_time is Long;

4. If dirtness_of_clothes is Large and type_of_dirt is Medium then wash_time is Long;

5. If dirtness_of_clothes is Medium and type_of_dirt is Medium then wash_time is Medium;

6. If dirtness_of_clothes is Small and type_of_dirt is Medium then wash_time is Medium;

7. If dirtness_of_clothes is Large and type_of_dirt is NotGreasy then wash_time is Medium;

8. If dirtness_of_clothes is Medium and type_of_dirt is NotGreasy then wash_time is Short;

9. If dirtness_of_clothes is Small and type_of_dirt is NotGreasy then wash_time is VeryShort

These rules have been shown as membership functions in figure 3.
[image: image21.emf]
Figure 3a Membership function for dirtness_of_clothes
[image: image22.emf]
Figure 3b Membership Function of type_of_dirt

The rules too have been defined in imprecise sense and hence they too are not crisp but fuzzy values.

The two input parameters after being read from the sensors are fuzzified as per the membership function

of the respective variables. These in additions with the membership function curve are utilized to come to

a solution (using some criteria). At last the crisp value of the wash_time is obtained as an answer.

4

Figure 3 Labels and membership functions for output variable wash_time

Results and discussion

The sensors sense the input values and using the above model the inputs are fuzzyfied and then by using

simple if-else rules and other simple fuzzy set operations the output fuzzy function is obtained and using

the criteria the output value for wash time is obtained. Figure 4 shows the response surface of the inputoutput

relations as determined by FIU. FIU stands for Fuzzy Interface Unit. This is the fundamental unit in

which the application interface FIDE encodes controller information.
[image: image23.emf]
Figure 4 Input/Output response surfaces

5

The results (the above plot) shows the way the machine will response in different conditions. For

example, if we take type_of_dirt and dirtness value both to be 100, the wash_time which the model output

is equivalent to 60 mins. This is quite convincing and appropriate.

Summary

By the use of fuzzy logic control we have been able to obtain a wash time for different type of dirt and

different degree of dirt. The conventional method required the human interruption to decide upon what

should be the wash time for different cloths. In other words this situation analysis ability has been

incorporated in the machine which makes the machine much more automatic and represents the decision

taking power of the new arrangement. Though the analysis in this paper has been very crude, but this

clearly depicts the advantage of adding the fuzzy logic controller in the conventional washing machine.

Future Directions

A more fully automatic washing machine is straightforward to design using fuzzy logic technology.

Moreover, the design process mimics human intuition, which adds to the ease of development and future

maintenance. Although this particular example controls only the wash time of a washing machine, the

design process can be extended without undue complications to other control variables such as water

level and spin speed. The formulation and implementation of membership functions and rules is similar to

that shown for wash time.




