RAJALAKSHMI ENGINEERING COLLEGE

 THANDALAM
EC2308: MICROPROCESSORS & MICROCONTROLLERS LAB MANUAL

V SEM ECE

 1. INTRODUCTION TO 8085

INTEL 8085 is one of the most popular 8-bit microprocessor capable of addressing 64 KB of memory and its architecture is simple. The device has 40 pins, requires +5 V power supply and can operate with 3MHz single phase clock.

ALU (Arithmetic Logic Unit):

The 8085A has a simple 8-bit ALU and it works in coordination with the accumulator, temporary registers, 5 flags and arithmetic and logic circuits. ALU has the capability of performing several mathematical and logical operations. The temporary registers are used to hold the data during an arithmetic and logic operation. The result is stored in the accumulator and the flags are set or reset according to the result of the operation. The flags are affected by the arithmetic and logic operation. They are as follows:

· Sign flag

After the execution of the arithmetic - logic operation if the bit D7 of the result is 1, the sign flag is set. This flag is used with signed numbers. If it is 1, it is a negative number and if it is 0, it is a positive number.

· Zero flag

The zero flag is set if the ALU operation results in zero. This flag is modified by the result in the accumulator as well as in other registers.

· Auxillary carry flag

In an arithmetic operation when a carry is generated by digit D3 and passed on to D4, the auxillary flag is set.

· Parity flag

After arithmetic – logic operation, if the result has an even number of 1’s the flag is set. If it has odd number of 1’s it is reset.

· Carry flag

If an arithmetic operation results in a carry, the carry flag is set. The carry flag also serves as a borrow flag for subtraction.

Timing and control unit

This unit synchronizes all the microprocessor operation with a clock and generates the control signals necessary for communication between the microprocessor and peripherals. The control signals RD (read) and WR (write) indicate the availability of data on the data bus.

Instruction register and decoder

The instruction register and decoder are part of the ALU. When an instruction is fetched from memory it is loaded in the instruction register. The decoder decodes the instruction and establishes the sequence of events to follow.

Register array

The 8085 has six general purpose registers to store 8-bit data during program execution. These registers are identified as B, C, D, E, H and L. they can be combined as BC, DE and HL to perform 16-bit operation.

Accumulator

Accumulator is an 8-bit register that is part of the ALU. This register is used to store 8-bit data and to perform arithmetic and logic operation. The result of an operation is stored in the accumulator.

Program counter

The program counter is a 16-bit register used to point to the memory address of the next instruction to be executed.

Stack pointer

It is a 16-bit register which points to the memory location in R/W memory, called the Stack.

Communication lines

8085 microprocessor performs data transfer operations using three communication lines called buses. They are address bus, data bus and control bus.

· Address bus – it is a group of 16-bit lines generally identified as A0 – A15. The address bus is unidirectional i.e., the bits flow in one direction from microprocessor to the peripheral devices. It is capable of addressing 216 memory locations.

· Data bus – it is a group of 8 lines used for data flow and it is bidirectional. The data ranges from 00 – FF.

· Control bus – it consist of various single lines that carry synchronizing signals. The microprocessor uses such signals for timing purpose.

2(A). 8 BIT DATA ADDITION

AIM:

 To add two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator.

4. Store the answer at another memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are added and the result stored at 4502 & 4503.

FLOW CHART:

[image: image3.wmf]

NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	
	START
	MVI
	C, 00
	Clear C reg.

	4101
	
	
	
	
	

	4102
	
	
	LXI
	H, 4500
	Initialize HL reg. to

4500

	4103
	
	
	
	
	

	4104
	
	
	
	
	

	4105
	
	
	MOV
	A, M
	Transfer first data to accumulator

	4106
	
	
	INX
	H
	Increment HL reg. to point next memory Location.

	4107
	
	
	ADD
	M
	Add first number to acc. Content.

	4108
	
	
	JNC
	L1
	Jump to location if result does not yield carry.

	4109
	
	
	
	
	

	410A
	
	
	
	
	

	410B
	
	
	INR
	C
	Increment C reg.

	410C
	
	L1
	INX
	H
	Increment HL reg. to point next memory Location.

	410D
	
	
	MOV
	M, A
	Transfer the result from acc. to memory.

	410E
	
	
	INX
	H
	Increment HL reg. to point next memory Location.

	410F
	
	
	MOV
	M, C
	Move carry to memory

	4110
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4502
	

	4501
	
	4503
	

2(B). 8 BIT DATA SUBTRACTION

AIM:

 To Subtract two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and subtract from the accumulator.

4. If the result yields a borrow, the content of the acc. is complemented and 01H is added to it (2’s complement). A register is cleared and the content of that reg. is incremented in case there is a borrow. If there is no borrow the content of the acc. is directly taken as the result.

5. Store the answer at next memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are subtracted and the result stored at 4502 & 4503.

[image: image4.wmf]

FLOW CHART:

NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	
	START
	MVI
	C, 00
	Clear C reg.

	4102
	
	
	
	
	

	4102
	
	
	LXI
	H, 4500
	Initialize HL reg. to

4500

	4103
	
	
	
	
	

	4104
	
	
	
	
	

	4105
	
	
	MOV
	A, M
	Transfer first data to accumulator

	4106
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4107
	
	
	SUB
	M
	Subtract first number from acc. Content.

	4108
	
	
	JNC
	L1
	Jump to location if result does not yield borrow.

	4109
	
	
	
	
	

	410A
	
	
	
	
	

	410B
	
	
	INR
	C
	Increment C reg.

	410C
	
	
	CMA
	
	Complement the Acc. content

	410D
	
	
	ADI
	01H
	Add 01H to content of acc.

	410E
	
	
	
	
	

	410F
	
	L1
	INX
	H
	Increment HL reg. to point next mem. Location.

	4110
	
	
	MOV
	M, A
	Transfer the result from acc. to memory.

	4111
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4112
	
	
	MOV
	M, C
	Move carry to mem.

	4113
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4502
	

	4501
	
	4503
	

3(A). 8 BIT DATA MULTIPLICATION

AIM:

 To multiply two 8 bit numbers stored at consecutive memory locations and store the result in memory.

ALGORITHM:

LOGIC: Multiplication can be done by repeated addition.

1. Initialize memory pointer to data location.

2. Move multiplicand to a register.

3. Move the multiplier to another register.

4. Clear the accumulator.

5. Add multiplicand to accumulator

6. Decrement multiplier

7. Repeat step 5 till multiplier comes to zero.

8. The result, which is in the accumulator, is stored in a memory location.

RESULT:

Thus the 8-bit multiplication was done in 8085(p using repeated addition method.

FLOW CHART:
[image: image5.wmf]

[image: image6.wmf]

[image: image7.wmf]

[image: image8.wmf]

[image: image9.wmf]

[image: image10.wmf]

[image: image11.wmf]

[image: image12.wmf]

[image: image13.wmf]

[image: image14.wmf]

[image: image15.wmf]

[image: image16.wmf]

[image: image17.wmf]

[image: image18.wmf]

[image: image19.wmf]

[image: image20.wmf]

[image: image21.wmf]

NO

[image: image22.wmf]

[image: image23.wmf]

[image: image24.wmf]

 YES

[image: image25.wmf]

[image: image26.wmf]

[image: image27.wmf]

[image: image28.wmf]

[image: image29.wmf]

[image: image30.wmf]

 NO

[image: image31.wmf]

[image: image32.wmf]

[image: image33.wmf]

 YES

[image: image34.wmf]

[image: image35.wmf]

[image: image36.wmf]

PROGRAM:

	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	
	START
	LXI
	H, 4500
	Initialize HL reg. to

[image: image37.wmf]

4500

Transfer first data to reg. B

	4101
	
	
	
	
	

	4102
	
	
	
	
	

	4103
	
	
	MOV
	B, M
	

	4104
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4105
	
	
	MVI
	A, 00H
	Clear the acc.

	4106
	
	
	
	
	

	4107
	
	
	MVI
	C, 00H
	Clear C reg for carry

	4108
	
	
	
	
	

	4109
	
	L1
	ADD
	M
	Add multiplicand multiplier times.

	410A
	
	
	JNC
	NEXT
	Jump to NEXT if there is no carry

	410B
	
	
	
	
	

	410C
	
	
	
	
	

	410D
	
	
	INR
	C
	Increment C reg

	410E
	
	NEXT
	DCR
	B
	Decrement B reg

	410F
	
	
	JNZ
	L1
	Jump to L1 if B is not zero.

	4110
	
	
	
	
	

	4111
	
	
	
	
	

	4112
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4113
	
	
	MOV
	M, A
	Transfer the result from acc. to memory.

	4114
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4115
	
	
	MOV
	M, C
	Transfer the result from C reg. to memory.

	4116
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4502
	

	4501
	
	4503
	

3(B). 8 BIT DIVISION

AIM:

To divide two 8-bit numbers and store the result in memory.

ALGORITHM:

LOGIC: Division is done using the method Repeated subtraction.

1. Load Divisor and Dividend

2. Subtract divisor from dividend

3. Count the number of times of subtraction which equals the quotient

4. Stop subtraction when the dividend is less than the divisor .The dividend now becomes the remainder. Otherwise go to step 2.

5. stop the program execution.

RESULT:

Thus an ALP was written for 8-bit division using repeated subtraction method and executed using 8085(p kits

FLOWCHART:

[image: image38.wmf]

NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	4100
	
	
	MVI
	B,00
	Clear B reg for quotient

	4101
	
	
	
	
	

	4102
	
	
	LXI
	H,4500
	Initialize HL reg. to

4500H

	4103
	
	
	
	
	

	4104
	
	
	
	
	

	4105
	
	
	MOV
	A,M
	Transfer dividend to acc.

	4106
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4107
	
	LOOP
	SUB
	M
	Subtract divisor from dividend

	4108
	
	
	INR
	B
	Increment B reg

	4109
	
	
	JNC
	LOOP
	Jump to LOOP if result does not yield borrow

	410A
	
	
	
	
	

	410B
	
	
	
	
	

	410C
	
	
	ADD
	M
	Add divisor to acc.

	410D
	
	
	DCR
	B
	Decrement B reg

	410E
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	410F
	
	
	MOV
	M,A
	Transfer the remainder from acc. to memory.

	4110
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4111
	
	
	MOV
	M,B
	Transfer the quotient from B reg. to memory.

	4112
	
	
	HLT
	
	Stop the program

OBSERVATION:

	S.NO
	INPUT
	OUTPUT

	
	ADDRESS
	DATA
	ADDRESS
	DATA

	1
	4500
	
	4502
	

	
	4501
	
	4503
	

	2
	4500
	
	4502
	

	
	4501
	
	4503
	

4(A). 16 BIT DATA ADDITION

AIM:

To add two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory and store in Register pair.

3. Get the second number in memory and add it to the Register pair.

4. Store the sum & carry in separate memory locations.

RESULT:

Thus an ALP program for 16-bit addition was written and executed in 8085(p using special instructions.

[image: image39.wmf]

FLOW CHART:
 NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	8000
	
	START
	LHLD
	8050H
	Load the augend in DE pair through HL pair.

	8001
	
	
	
	
	

	8002
	
	
	
	
	

	8003
	
	
	XCHG
	
	

	8004
	
	
	LHLD
	8052H
	Load the addend in HL pair.

	8005
	
	
	
	
	

	8006
	
	
	
	
	

	8007
	
	
	MVI
	A, 00H
	Initialize reg. A for carry

	8008
	
	
	
	
	

	8009
	
	
	DAD
	D
	Add the contents of HL

Pair with that of DE pair.

	800A
	
	
	JNC
	LOOP
	If there is no carry, go to the instruction labeled LOOP.

	800B
	
	
	
	
	

	800C
	
	
	
	
	

	800D
	
	
	INR
	A
	Otherwise increment reg. A

	800E
	
	LOOP
	SHLD
	8054H
	Store the content of HL Pair in 8054H(LSB of sum)

	800F
	
	
	
	
	

	8010
	
	
	
	
	

	8011
	
	
	STA
	8056H
	Store the carry in 8056H through Acc.

(MSB of sum).

	8012
	
	
	
	
	

	8013
	
	
	
	
	

	8014
	
	
	HLT
	
	Stop the program.

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8050H
	
	8054H
	

	8051H
	
	8055H
	

	8052H
	
	8056H
	

	8053H
	

4(B). 16 BIT DATA SUBTRACTION

AIM:

 To subtract two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the subtrahend from memory and transfer it to register pair.

3. Get the minuend from memory and store it in another register pair.

4. Subtract subtrahend from minuend.

5. Store the difference and borrow in different memory locations.

RESULT:

Thus an ALP program for subtracting two 16-bit numbers was written and executed.

FLOW CHART:
[image: image40.wmf]

[image: image41.wmf]

[image: image42.wmf]

[image: image43.wmf]

[image: image44.wmf]

[image: image45.wmf]

[image: image46.wmf]

[image: image47.wmf]

[image: image48.wmf]

[image: image49.wmf]

[image: image50.wmf]

[image: image51.wmf]

[image: image52.wmf]

[image: image53.wmf]

[image: image54.wmf]

[image: image55.wmf]

[image: image56.wmf]

[image: image57.wmf]

[image: image58.wmf]

[image: image59.wmf]

[image: image60.wmf]

[image: image61.wmf]

[image: image62.wmf]

[image: image63.wmf]

[image: image64.wmf]

[image: image65.wmf]

[image: image66.wmf]

[image: image67.wmf]

[image: image68.wmf]

[image: image69.wmf]

[image: image70.wmf]

 NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMO

NICS
	OPER

AND
	COMMENTS

	8000
	
	START
	MVI
	C, 00
	Initialize C reg.

	8001
	
	
	
	
	

	8002
	
	
	LHLD
	8050H
	Load the subtrahend in DE reg. Pair through HL reg. pair.

	8003
	
	
	
	
	

	8004
	
	
	
	
	

	8005
	
	
	XCHG
	
	

	8006
	
	
	LHLD
	8052H
	Load the minuend in HL reg. Pair.

	8007
	
	
	
	
	

	8008
	
	
	
	
	

	8009
	
	
	MOV
	A, L
	Move the content of reg. L to Acc.

	800A
	
	
	SUB
	E
	Subtract the content of reg. E from that of acc.

	800B
	
	
	MOV
	L, A
	Move the content of Acc. to reg. L

	800C
	
	
	MOV
	A, H
	Move the content of reg. H to Acc.

	800D
	
	
	SBB
	D
	Subtract content of reg. D with that of Acc.

	800E
	
	
	MOV
	H, A
	Transfer content of acc. to reg. H

	800F
	
	
	SHLD
	8054H
	Store the content of HL pair in memory location 8504H.

	8010
	
	
	
	
	

	8011
	
	
	
	
	

	8012
	
	
	JNC
	NEXT
	If there is borrow, go to the instruction labeled NEXT.

	8013
	
	
	
	
	

	8014
	
	
	
	
	

	8015
	
	
	INR
	C
	Increment reg. C

	8016
	
	NEXT
	MOV
	A, C
	Transfer the content of reg. C to Acc.

	8017
	
	
	STA
	8056H
	Store the content of acc. to the memory location 8506H

	8018
	
	
	
	
	

	8019
	
	
	
	
	

	801A
	
	
	HLT
	
	Stop the program execution.

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8050H
	
	8054H
	

	8051H
	
	8055H
	

	8052H
	
	8056H
	

	8053H
	

5(A). 16 BIT MULTIPLICATION

AIM:

 To multiply two 16 bit numbers and store the result in memory.

ALGORITHM:

1. Get the multiplier and multiplicand.

2. Initialize a register to store partial product.

3. Add multiplicand, multiplier times.

4. Store the result in consecutive memory locations.

RESULT:

Thus the 16-bit multiplication was done in 8085(p using repeated addition method.

FLOWCHART:

[image: image71.wmf]

 NO

 YES

 NO

 YES

[image: image72.wmf]

	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	8000
	
	START
	LHLD
	8050
	Load the first No. in stack pointer through HL reg. pair

	8001
	
	
	
	
	

	8002
	
	
	
	
	

	8003
	
	
	SPHL
	
	

	8004
	
	
	LHLD
	8052
	Load the second No. in HL reg. pair

& Exchange with DE reg. pair.

	8005
	
	
	
	
	

	8006
	
	
	
	
	

	8007
	
	
	XCHG
	
	

	8008
	
	
	LXI
	H, 0000H
	Clear HL & DE reg. pairs.

	8009
	
	
	
	
	

	800A
	
	
	
	
	

	800B
	
	
	LXI
	B, 0000H
	

	800C
	
	
	
	
	

	800D
	
	
	
	
	

	800E
	
	LOOP
	DAD
	SP
	Add SP with HL pair.

	800F
	
	
	JNC
	NEXT
	If there is no carry, go to the instruction labeled NEXT

	8010
	
	
	
	
	

	8011
	
	
	
	
	

	8012
	
	
	INX
	B
	Increment BC reg. pair

	8013
	
	NEXT
	DCX
	D
	Decrement DE reg. pair.

	8014
	
	
	MOV
	A,E
	Move the content of reg. E to Acc.

	8015
	
	
	ORA
	D
	OR Acc. with D reg.

	8016
	
	
	JNZ
	LOOP
	If there is no zero, go to instruction labeled LOOP

	8017
	
	
	
	
	

	8018
	
	
	
	
	

	8019
	
	
	SHLD
	8054
	Store the content of HL pair in memory locations 8054 & 8055.

	801A
	
	
	
	
	

	801B
	
	
	
	
	

	801C
	
	
	MOV
	A, C
	Move the content of reg. C to Acc.

	801D
	
	
	STA
	8056
	Store the content of Acc. in memory location 8056.

	801E
	
	
	
	
	

	801F
	
	
	
	
	

	8020
	
	
	MOV
	A, B
	Move the content of reg. B to Acc.

	8021
	
	
	STA
	8057
	Store the content of Acc. in memory location 8056.

	8022
	
	
	
	
	

	8023
	
	
	
	
	

	8024
	
	
	HLT
	
	Stop program execution

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8050
	
	8054
	

	8051
	
	8055
	

	8052
	
	8056
	

	8053
	
	8057
	

5(B). 16- BIT DIVISION

AIM:

 To divide two 16-bit numbers and store the result in memory using 8085 mnemonics.

ALGORITHM:

1. Get the dividend and divisor.

2. Initialize the register for quotient.

3. Repeatedly subtract divisor from dividend till dividend becomes less than divisor.

4. Count the number of subtraction which equals the quotient.

5. Store the result in memory.

RESULT:

Thus the 16-bit Division was done in 8085(p using repeated subtraction method.

FLOWCHART:

[image: image73.wmf]

NO

YES

[image: image74.wmf]

PROGRAM:

	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERA

ND
	COMMENTS

	8000
	
	START
	LHLD
	8052
	Load the first No. in stack pointer through HL reg. pair

	8001
	
	
	
	
	

	8002
	
	
	
	
	

	8003
	
	
	XCHG
	
	

	8004
	
	
	LHLD
	8050
	Load the second No. in HL reg. pair

& Exchange with DE reg. pair.

	8005
	
	
	
	
	

	8006
	
	
	
	
	

	8007
	
	
	LXI
	B, 0000H
	Clear BC reg. pair.

	8008
	
	
	
	
	

	8009
	
	
	
	
	

	800A
	
	LOOP
	MOV
	A, L
	Move the content of reg. L to Acc.

	800B
	
	
	SUB
	E
	Subtract reg. E from that of Acc.

	800C
	
	
	MOV
	L, A
	Move the content of Acc to L.

	800D
	
	
	MOV
	A, H
	Move the content of reg. H Acc.

	800E
	
	
	SBB
	D
	Subtract reg. D from that of Acc.

	800F
	
	
	MOV
	H, A
	Move the content of Acc to H.

	8010
	
	
	INX
	B
	Increment reg. Pair BC

	8011
	
	
	JNC
	LOOP
	If there is no carry, go to the location labeled LOOP.

	8012
	
	
	
	
	

	8013
	
	
	
	
	

	8014
	
	
	DCX
	B
	Decrement BC reg. pair.

	8015
	
	
	DAD
	D
	Add content of HL and DE reg. pairs.

	8016
	
	
	SHLD
	8054
	Store the content of HL pair in 8054 & 8055.

	8017
	
	
	
	
	

	8018
	
	
	
	
	

	8019
	
	
	MOV
	A, C
	Move the content of reg. C to Acc.

	801A
	
	
	STA
	8056
	Store the content of Acc. in memory 8056

	801B
	
	
	
	
	

	801C
	
	
	
	
	

	801D
	
	
	MOV
	A, B
	Move the content of reg. B to Acc.

	801E
	
	
	STA
	8057
	Store the content of Acc. in memory 8057.

	801F
	
	
	
	
	

	8020
	
	
	
	
	

	8021
	
	
	HLT
	
	Stop the program execution.

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8050
	
	8054
	

	8051
	
	8055
	

	8052
	
	8056
	

	8053
	
	8057
	

6(A). LARGEST ELEMENT IN AN ARRAY

AIM:

To find the largest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next element).

7. If the accumulator content is smaller, then move the memory content (largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

Thus the largest number in the given array is found out.

FLOW CHART:

[image: image75.wmf]

 NO

 YES

 NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8001
	
	
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8002
	
	
	
	
	

	8003
	
	
	
	
	

	8004
	
	
	MVI
	B,04
	Initialize B reg with no. of comparisons(n-1)

	8005
	
	
	
	
	

	8006
	
	
	MOV
	A,M
	Transfer first data to acc.

	8007
	
	LOOP1
	INX
	H
	Increment HL reg. to point next memory location

	8008
	
	
	CMP
	M
	Compare M & A

	8009
	
	
	JNC
	LOOP
	If A is greater than M then go to loop

	800A
	
	
	
	
	

	800B
	
	
	
	
	

	800C
	
	
	MOV
	A,M
	Transfer data from M to A reg

	800D
	
	LOOP
	DCR
	 B
	Decrement B reg

	800E
	
	
	JNZ
	LOOP1
	If B is not Zero go to loop1

	800F
	
	
	
	
	

	8010
	
	
	
	
	

	8011
	
	
	STA
	8105
	Store the result in a memory location.

	8012
	
	
	
	
	

	8013
	
	
	
	
	

	8014
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8100
	
	8105
	

	8101
	

	8102
	

	8103
	

	8104
	

6(B). SMALLEST ELEMENT IN AN ARRAY

AIM:

To find the smallest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next element).

7. If the accumulator content is smaller, then move the memory content (largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

Thus the smallest number in the given array is found out.

FLOW CHART:

[image: image76.wmf]

 YES

 NO

 NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8001
	
	
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8002
	
	
	
	
	

	8003
	
	
	
	
	

	8004
	
	
	MVI
	B,04
	Initialize B reg with no. of comparisons(n-1)

	8005
	
	
	
	
	

	8006
	
	
	MOV
	A,M
	Transfer first data to acc.

	8007
	
	LOOP1
	INX
	H
	Increment HL reg. to point next memory location

	8008
	
	
	CMP
	M
	Compare M & A

	8009
	
	
	JC
	LOOP
	If A is lesser than M then go to loop

	800A
	
	
	
	
	

	800B
	
	
	
	
	

	800C
	
	
	MOV
	A,M
	Transfer data from M to A reg

	800D
	
	LOOP
	DCR
	 B
	Decrement B reg

	800E
	
	
	JNZ
	LOOP1
	If B is not Zero go to loop1

	800F
	
	
	
	
	

	8010
	
	
	
	
	

	8011
	
	
	STA
	8105
	Store the result in a memory location.

	8012
	
	
	
	
	

	8013
	
	
	
	
	

	8014
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8100
	
	8105
	

	8101
	

	8102
	

	8103
	

	8104
	

7(A).ASCENDING ORDER

AIM:

To sort the given number in the ascending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is larger than second then I interchange the number.

3. If the first number is smaller, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

Thus the ascending order program is executed and thus the numbers are arranged in ascending order.

[image: image77.wmf]

FLOWCHART:

YES

 NO

[image: image78.wmf]

NO

 YES

NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8000
	
	
	MVI
	B,04
	Initialize B reg with number of comparisons (n-1)

	8001
	
	
	
	
	

	8002
	
	LOOP 3
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8003
	
	
	
	
	

	8004
	
	
	
	
	

	8005
	
	
	MVI
	C,04
	Initialize C reg with no. of comparisons(n-1)

	8006
	
	
	
	
	

	8007
	
	LOOP2
	MOV
	A,M
	Transfer first data to acc.

	8008
	
	
	INX
	H
	Increment HL reg. to point next memory location

	8009
	
	
	CMP
	M
	Compare M & A

	800A
	
	
	JC
	LOOP1
	If A is less than M then go to loop1

	800B
	
	
	
	
	

	800C
	
	
	
	
	

	800D
	
	
	MOV
	D,M
	Transfer data from M to D reg

	800E
	
	
	MOV
	M,A
	Transfer data from acc to M

	800F
	
	
	DCX
	H
	Decrement HL pair

	8010
	
	
	MOV
	M,D
	Transfer data from D to M

	8011
	
	
	INX
	H
	Increment HL pair

	8012
	
	LOOP1
	DCR
	C
	Decrement C reg

	8013
	
	
	JNZ
	LOOP2
	If C is not zero go to loop2

	8014
	
	
	
	
	

	8015
	
	
	
	
	

	8016
	
	
	DCR
	 B
	Decrement B reg

	8017
	
	
	JNZ
	LOOP3
	If B is not Zero go to loop3

	8018
	
	
	
	
	

	8019
	
	
	
	
	

	801A
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	MEMORY

LOCATION
	DATA
	MEMORY

LOCATION
	DATA

	8100
	
	8100
	

	8101
	
	8101
	

	8102
	
	8102
	

	8103
	
	8103
	

	8104
	
	8104
	

7(B). DESCENDING ORDER

AIM:

To sort the given number in the descending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is smaller than second then I interchange the number.

3. If the first number is larger, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

Thus the descending order program is executed and thus the numbers are arranged in descending order.

[image: image79.wmf]

FLOWCHART:

 NO

 YES

[image: image80.wmf]

NO

 YES

NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8000
	
	
	MVI
	B,04
	Initialize B reg with number of comparisons (n-1)

	8001
	
	
	
	
	

	8002
	
	LOOP 3
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8003
	
	
	
	
	

	8004
	
	
	
	
	

	8005
	
	
	MVI
	C,04
	Initialize C reg with no. of comparisons(n-1)

	8006
	
	
	
	
	

	8007
	
	LOOP2
	MOV
	A,M
	Transfer first data to acc.

	8008
	
	
	INX
	H
	Increment HL reg. to point next memory location

	8009
	
	
	CMP
	M
	Compare M & A

	800A
	
	
	JNC
	LOOP1
	If A is greater than M then go to loop1

	800B
	
	
	
	
	

	800C
	
	
	
	
	

	800D
	
	
	MOV
	D,M
	Transfer data from M to D reg

	800E
	
	
	MOV
	M,A
	Transfer data from acc to M

	800F
	
	
	DCX
	H
	Decrement HL pair

	8010
	
	
	MOV
	M,D
	Transfer data from D to M

	8011
	
	
	INX
	H
	Increment HL pair

	8012
	
	LOOP1
	DCR
	C
	Decrement C reg

	8013
	
	
	JNZ
	LOOP2
	If C is not zero go to loop2

	8014
	
	
	
	
	

	8015
	
	
	
	
	

	8016
	
	
	DCR
	 B
	Decrement B reg

	8017
	
	
	JNZ
	LOOP3
	If B is not Zero go to loop3

	8018
	
	
	
	
	

	8019
	
	
	
	
	

	801A
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	MEMORY

LOCATION
	DATA
	MEMORY

LOCATION
	DATA

	8100
	
	8100
	

	8101
	
	8101
	

	8102
	
	8102
	

	8103
	
	8103
	

	8104
	
	8104
	

8(A). CODE CONVERSION –DECIMAL TO HEX

AIM:

To convert a given decimal number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given decimal number with accumulator value.

5. When both matches, the equivalent hexadecimal value is in B register.

6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of decimal to hexadecimal was written and executed.

FLOWCHART:

[image: image81.wmf]

 NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8000
	
	
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8001
	
	
	
	
	

	8002
	
	
	
	
	

	8003
	
	
	MVI
	A,00
	Initialize A register.

	8004
	
	
	
	
	

	8005
	
	
	MVI
	B,00
	Initialize B register..

	8006
	
	
	
	
	

	8007
	
	LOOP
	INR
	B
	Increment B reg.

	8008
	
	
	ADI
	01
	Increment A reg

	8009
	
	
	
	
	

	800A
	
	
	DAA
	
	Decimal Adjust Accumulator

	800B
	
	
	CMP
	M
	Compare M & A

	800C
	
	
	JNZ
	LOOP
	If acc and given number are not equal, then go to LOOP

	800D
	
	
	
	
	

	800E
	
	
	
	
	

	800F
	
	
	MOV
	A,B
	Transfer B reg to acc.

	8010
	
	
	STA
	8101
	Store the result in a memory location.

	8011
	
	
	
	
	

	8012
	
	
	
	
	

	8013
	
	
	HLT
	
	Stop the program

RESULT:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	
8100
	
	8101
	

8(B). CODE CONVERSION –HEXADECIMAL TO DECIMAL

AIM:

To convert a given hexadecimal number to decimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given hexadecimal number with B register value.

5. When both match, the equivalent decimal value is in A register.

6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of hexadecimal to decimal was written and executed.

FLOWCHART:

[image: image82.wmf]

 NO

 YES

PROGRAM:

	ADDRE

SS
	OPCO

DE
	LABEL
	MNEM

ONICS
	OPER

AND
	COMMENTS

	8000
	
	
	LXI
	H,8100
	Initialize HL reg. to

8100H

	8001
	
	
	
	
	

	8002
	
	
	
	
	

	8003
	
	
	MVI
	A,00
	Initialize A register.

	8004
	
	
	
	
	

	8005
	
	
	MVI
	B,00
	Initialize B register.

	8006
	
	
	
	
	

	8007
	
	
	MVI
	C,00
	Initialize C register for carry.

	8008
	
	
	
	
	

	8009
	
	LOOP
	INR
	B
	Increment B reg.

	800A
	
	
	ADI
	01
	Increment A reg

	800B
	
	
	
	
	

	800C
	
	
	DAA
	
	Decimal Adjust Accumulator

	800D
	
	
	JNC
	NEXT
	If there is no carry go to NEXT.

	800E
	
	
	
	
	

	800F
	
	
	
	
	

	8010
	
	
	INR
	C
	Increment c register.

	8011
	
	NEXT
	MOV
	D,A
	Transfer A to D

	8012
	
	
	MOV
	A,B
	Transfer B to A

	8013
	
	
	CMP
	M
	Compare M & A

	8014
	
	
	MOV
	A,D
	Transfer D to A

	8015
	
	
	JNZ
	LOOP
	If acc and given number are not equal, then go to LOOP

	8016
	
	
	
	
	

	8017
	
	
	
	
	

	8018
	
	
	STA
	8101
	Store the result in a memory location.

	8019
	
	
	
	
	

	801A
	
	
	
	
	

	801B
	
	
	MOV
	A,C
	Transfer C to A

	801C
	
	
	STA
	8102
	Store the carry in another memory location.

	801D
	
	
	
	
	

	801E
	
	
	
	
	

	801F
	
	
	HLT
	
	Stop the program

RESULT:

	INPUT
	OUTPUT

	ADDRESS
	DATA
	ADDRESS
	DATA

	8100
	
	8101
	

	8102
	

9(A) BCD ADDITION

AIM:

 To add two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator

4. Adjust the accumulator value to the proper BCD value using DAA instruction.

5. Store the answer at another memory location.

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are added and the result stored at 4502 & 4503.

FLOW CHART:

[image: image83.wmf]

NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	
	START
	MVI
	C, 00
	Clear C reg.

	4103
	
	
	
	
	

	4102
	
	
	LXI
	H, 4500
	Initialize HL reg. to

4500

	4103
	
	
	
	
	

	4104
	
	
	
	
	

	4105
	
	
	MOV
	A, M
	Transfer first data to accumulator

	4106
	
	
	INX
	H
	Increment HL reg. to point next memory Location.

	4107
	
	
	ADD
	M
	Add first number to acc. Content.

	4108
	
	
	DAA
	
	Decimal adjust accumulator

	4109
	
	
	JNC
	L1
	Jump to location if result does not yield carry.

	410A
	
	
	
	
	

	410B
	
	
	
	
	

	410C
	
	
	INR
	C
	Increment C reg.

	410D
	
	L1
	INX
	H
	Increment HL reg. to point next memory Location.

	410E
	
	
	MOV
	M, A
	Transfer the result from acc. to memory.

	410F
	
	
	INX
	H
	Increment HL reg. to point next memory Location.

	4110
	
	
	MOV
	M, C
	Move carry to memory

	4111
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4502
	

	4501
	
	4503
	

9(B). BCD SUBTRACTION

AIM:

 To Subtract two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Load the minuend and subtrahend in two registers.

2. Initialize Borrow register to 0.

3. Take the 100’s complement of the subtrahend.

4. Add the result with the minuend which yields the result.

5. Adjust the accumulator value to the proper BCD value using DAA instruction. If there is a carry ignore it.

6. If there is no carry, increment the carry register by 1

7. Store the content of the accumulator (result)and borrow register in the specified memory location

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are subtracted and the result stored at 4502 & 4503.

[image: image84.wmf]

FLOW CHART:

 YES

 NO

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	
	START
	MVI
	D, 00
	Clear D reg.

	4101
	
	
	
	
	

	4102
	
	
	LXI
	H, 4500
	Initialize HL reg. to

4500

	4103
	
	
	
	
	

	4104
	
	
	
	
	

	4105
	
	
	MOV
	B, M
	Transfer first data to accumulator

	4106
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4107
	
	
	MOV
	C, M
	Move second no. to B reg.

	4108
	
	
	MVI
	A, 99
	Move 99 to the Accumulator

	4109
	
	
	
	
	

	410A
	
	
	SUB
	C
	Subtract [C] from acc. Content.

	410B
	
	
	INR
	A
	Increment A register

	410C
	
	
	ADD
	B
	Add [B] with [A]

	410D
	
	
	DAA
	
	Adjust Accumulator value for Decimal digits

	410E
	
	
	JC
	LOOP
	Jump on carry to loop

	410F
	
	
	
	
	

	4110
	
	
	
	
	

	4111
	
	
	INR
	D
	Increment D reg.

	4112
	
	LOOP
	INX
	H
	Increment HL register pair

	4113
	
	
	MOV
	M , A
	Move the Acc.content to the memory location

	4114
	
	
	INX
	H
	Increment HL reg. to point next mem. Location.

	4115
	
	
	MOV
	M, D
	Transfer D register content to memory.

	4116
	
	
	HLT
	
	Stop the program

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4502
	

	4501
	
	4503
	

10. 2 X 2 MATRIX MULTIPLICATION

AIM:

To perform the 2 x 2 matrix multiplication.

ALGORITHM:

1. Load the 2 input matrices in the separate address and initialize the HL and the DE register pair with the starting address respectively.

2. Call a subroutine for performing the multiplication of one element of a matrix with the other element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

RESULT:

Thus the 2 x 2 matrix multiplication is performed and the result is stored at 4700,4701 , 4702 & 4703.

FLOW CHART:

[image: image85.wmf]

 YES

 NO

[image: image86.wmf]

[image: image87.wmf]

[image: image88.wmf]

 YES

 NO

 NO

 YES

PROGRAM:
	ADDRESS
	OPCODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	8100
	
	
	MVI
	C, 00
	Clear C reg.

	8101
	
	
	
	
	

	8102
	
	
	LXI
	H, 8500
	Initialize HL reg. to

4500

	8103
	
	
	
	
	

	8104
	
	
	
	
	

	8105
	
	LOOP2
	LXI
	D, 8600
	Load DE register pair

	8106
	
	
	
	
	

	8107
	
	
	
	
	

	8108
	
	
	CALL
	MUL
	Call subroutine MUL

	8109
	
	
	
	
	

	810A
	
	
	
	
	

	810B
	
	
	MOV
	B,A
	Move A to B reg.

	810C
	
	
	INX
	H
	Increment HL register pair .

	810D
	
	
	INX
	D
	Increment DE register pair

	810E
	
	
	INX
	D
	Increment DE register pair

	810F
	
	
	CALL
	MUL
	Call subroutine MUL

	8110
	
	
	
	
	

	8111
	
	
	
	
	

	8112
	
	
	ADD
	B
	Add [B] with [A]

	8113
	
	
	CALL
	STORE
	Call subroutine STORE

	8114
	
	
	
	
	

	8115
	
	
	
	
	

	8116
	
	
	DCX
	H
	Decrement HL register pair

	8117
	
	
	DCX
	D
	Decrement DE register pair

	8118
	
	
	CALL
	MUL
	Call subroutine MUL

	8119
	
	
	
	
	

	811A
	
	
	
	
	

	811B
	
	
	MOV
	B,A
	Transfer A reg content to B reg.

	811C
	
	
	INX
	H
	Increment HL register pair

	811D
	
	
	INX
	D
	Increment DE register pair

	811E
	
	
	INX
	D
	Increment DE register pair

	811F
	
	
	CALL
	MUL
	Call subroutine MUL

	8120
	
	
	
	
	

	8121
	
	
	
	
	

	8122
	
	
	ADD
	B
	Add A with B

	8123
	
	
	CALL
	STORE
	Call subroutine MUL

	8124
	
	
	
	
	

	8125
	
	
	
	
	

	8126
	
	
	MOV
	A,C
	[image: image89.wmf]

Transfer C register content to Acc.

	8127
	
	
	CPI
	04
	Compare with 04 to check whether all elements are multiplied.

	8128
	
	
	
	
	

	8129
	
	
	JZ
	LOOP1
	If completed, go to loop1

	812A
	
	
	
	
	

	812B
	
	
	
	
	

	812C
	
	
	INX
	H
	Increment HL register Pair.

	812D
	
	
	JMP
	LOOP2
	Jump to LOOP2.

	812E
	
	
	
	
	

	812F
	
	
	
	
	

	8130
	
	LOOP1
	HLT
	
	Stop the program.

	8131
	
	MUL
	LDAX
	D
	Load acc from the memory location pointed by DE pair.

	8132
	
	
	MOV
	D,A
	Transfer acc content to D register.

	8133
	
	
	MOV
	H,M
	Transfer from memory to H register.

	8134
	
	
	DCR
	H
	Decrement H register.

	8135
	
	
	JZ
	LOOP3
	If H is zero go to LOOP3.

	8136
	
	
	
	
	

	8137
	
	
	
	
	

	8138
	
	LOOP4
	ADD
	D
	Add Acc with D reg

	8139
	
	
	DCR
	H
	Decrement H register.

	813A
	
	
	JNZ
	LOOP4
	If H is not zero go to LOOP4.

	813B
	
	
	
	
	

	813C
	
	
	
	
	

	813D
	
	LOOP3
	MVI
	H,85
	Transfer 85 TO H register.

	813E
	
	
	
	
	

	813F
	
	
	MVI
	D,86
	Transfer 86 to D register.

	8140
	
	
	
	
	

	8141
	
	
	RET
	
	Return to main program.

	8142
	
	STORE
	MVI
	B,87
	Transfer 87 to B register.

	8143
	
	
	
	
	

	8144
	
	
	STAX
	B
	Load A from memory location pointed by BC pair.

	8145
	
	
	INR
	C
	Increment C register.

	8146
	
	
	RET
	
	Return to main program.

OBSERVATION:

	INPUT
	OUTPUT

	4500
	
	4600
	
	4700
	

	4501
	
	4601
	
	4701
	

	4502
	
	4602
	
	4702
	

	4503
	
	4603
	
	4703
	

11. BIOS/DOS CALLS – DISPLAY

AIM:

To display a message on the CRT screen of a microcomputer using DOS calls.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for display.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AH, 09H

MOV DX, OFFSET MSG

INT 21H

MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT:

A message is displayed on the CRT screen of a microcomputer using DOS calls

12. BIOS/DOS CALLS – FILE MANIPULATION
AIM:

To open a file using DOS calls.

ALGORITHM:

1. Initialize the data segment, file name and the message to be displayed.

2. Set the file attribute to create a file using a DOS call.

3. If the file is unable t o create a file display the message

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

FILENAME DB “SAMPLE.DAT”, “$”

MSG DB 0DH, 0AH, “FILE NOT CREATED”, ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET FILENAME

MOV CX, 00H

MOV AH, 3CH

INT 21H

JNC LOOP1

MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET MSG

MOV AH, 09H

INT 21H

LOOP1
MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT:

A file is opened using DOS calls.

13. BIOS/DOS CALLS – DISK INFORMATION
AIM:

To display the disk information.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for disk information.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AH, 36H

MOV DX, OFFSET MSG

INT 21H

MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT:

The disk information is displayed.

1.8086 STRING MANIPULATION – SEARCH A WORD

AIM:

To search a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to search a word from string.

5. If a match is found (z=1), display 01 in destination address. Otherwise, display 00 in destination address.

RESULT:

A word is searched and the count of number of appearances is displayed.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AX, 15H

MOV SI, OFFSET LIST

MOV DI, DEST

MOV CX, COUNT

MOV AX, 00

CLD

REP

SCASW

JZ LOOP

MOV AX, 01

LOOP

MOV [DI], AX

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H
OUTPUT:

3000
01

2.8086 STRING MANIPULATION –FIND AND REPLACE A WORD

AIM:

To find and replace a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to search a word from string.

5. If a match is found (z=1), replace the old word with the current word in destination address. Otherwise, stop.

RESULT:

A word is found and replaced from a string.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

REPLACE EQU 30H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AX, 15H

MOV SI, OFFSET LIST

MOV CX, COUNT

MOV AX, 00

CLD

REP

SCASW

JNZ LOOP

MOV DI, LABEL LIST

MOV [DI], REPLACE

LOOP

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H
OUTPUT:

LIST: 53H, 30H, 19H, 02H
3. 8086 STRING MANIPULATION – COPY A STRING

AIM:

To copy a string of data words from one location to the other.

ALGORITHM:

6. Load the source and destination index register with starting and the ending address respectively.

7. Initialize the counter with the total number of words to be copied.

8. Clear the direction flag for auto incrementing mode of transfer.

9. Use the string manipulation instruction MOVSW with the prefix REP to copy a string from source to destination.

RESULT:

A string of data words is copied from one location to other.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

SOURCE EQU 2000H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV ES, AX

MOV SI, SOURCE

MOV DI, DEST

MOV CX, COUNT

CLD

REP
MOVSW

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

OUTPUT:

2000
48

3000
48

2001
84

3001
84

2002
67

3002
67

2003
90

3003
90

2004
21

3004
21

4.8086 STRING MANIPULATION – SORTING
AIM:

To sort a group of data bytes.

ALGORITHM:

· Place all the elements of an array named list (in the consecutive memory locations).

· Initialize two counters DX & CX with the total number of elements in the array.

· Do the following steps until the counter B reaches 0.

· Load the first element in the accumulator

· Do the following steps until the counter C reaches 0.

1. Compare the accumulator content with the next element present in the next memory location. If the accumulator content is smaller go to next step; otherwise, swap the content of accumulator with the content of memory location.

2. Increment the memory pointer to point to the next element.

3. Decrement the counter C by 1.

· Stop the execution.

RESULT:

 A group of data bytes are arranged in ascending order.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 25H, 19H, 02H

COUNT EQU 04H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV DX, COUNT-1

LOOP2:
MOV CX, DX

MOV SI, OFFSET LIST

AGAIN:
MOV AX, [SI]

CMP AX, [SI+2]

JC LOOP1

XCHG [SI +2], AX

XCHG [SI], AX

LOOP1:
ADD SI, 02

LOOP AGAIN

DEC DX

JNZ LOOP2

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 25H, 19H, 02H
OUTPUT:

LIST: 02H, 19H, 25H, 53H

4. INTERFACING 8255 WITH 8085

AIM:

To interface programmable peripheral interface 8255 with 8085 and study its characteristics in mode0,mode1 and BSR mode.

APPARATUS REQUIRED:

8085 (p kit, 8255Interface board, DC regulated power supply, VXT parallel bus

 I/O MODES:

Control Word:

[image: image1.jpg]GROUP B

PORT C (LOWER)
3 oweur

0-ouTPUT

PORT B

T
- oUTRUT

MODE SELECTION
* o-mooeo

1-MODE 1

GROUP A

PORT C (UPPER)
% e

0-outPUT

PORT A

1-INPUT
? o outeur

'MODE SELEGTION
00 - MODE 0
% oi-mooe1

1X-MODE 2

MODE SET FLAG
¥ 1 acTve

MODE 0 – SIMPLE I/O MODE:

This mode provides simple I/O operations for each of the three ports and is suitable for synchronous data transfer. In this mode all the ports can be configured either as input or output port.

Let us initialize port A as input port and port B as output port

PROGRAM:

	ADDRESS
	OPCODES
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	4100
	
	START:
	MVI
	A, 90
	Initialize port A as Input and Port B as output.

	4101
	
	
	
	
	

	4102
	
	
	OUT
	C6
	Send Mode Control word

	4103
	
	
	
	
	

	4104
	
	
	IN
	C0
	Read from Port A

	4105
	
	
	
	
	

	4106
	
	
	OUT
	C2
	Display the data in port B

	4107
	
	
	
	
	

	4108
	
	
	STA
	4200
	Store the data read from Port A in 4200

	4109
	
	
	
	
	

	410A
	
	
	
	
	

	410B
	
	
	HLT
	
	Stop the program.

MODE1 STROBED I/O MODE:

In this mode, port A and port B are used as data ports and port C is used as control signals for strobed I/O data transfer.

Let us initialize port A as input port in mode1

MAIN PROGRAM:

	ADDRESS
	OPCODES
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	4100
	
	START:
	MVI
	A, B4
	Initialize port A as Input port in mode 1.

	4101
	
	
	
	
	

	4102
	
	
	OUT
	C6
	Send Mode Control word

	4103
	
	
	
	
	

	4104
	
	
	MVI
	A,09
	Set the PC4 bit for INTE A

	4105
	
	
	
	
	

	4106
	
	
	OUT
	C6
	Display the data in port B

	4107
	
	
	
	
	

	
	
	
	EI
	
	

	4108
	
	
	MVI
	A,08
	Enable RST5.5

	4109
	
	
	
	
	

	410A
	
	
	SIM
	
	

	
	
	
	EI
	
	

	410B
	
	
	HLT
	
	Stop the program.

ISR (Interrupt Service Routine)

	ADDRESS
	OPCODES
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	4200
	
	START:
	IN
	C0
	Read from port A

	4201
	
	
	
	
	

	4202
	
	
	STA
	4500
	Store in 4500.

	4203
	
	
	
	
	

	4204
	
	
	
	
	

	4205
	
	
	HLT
	
	Stop the program.

Sub program:

	ADDRESS
	OPCODES
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	405E
	
	
	JMP
	4200
	Go to 4200

	405F
	
	
	
	
	

	4060
	
	
	
	
	

BSR MODE (Bit Set Reset mode)

[image: image2.jpg]CONTROL WORD

o, [og |05 {0 [050,04 [,
[
DONT CARE
BIT SET /RESET
> s
2-RESET
O[1]2[3]4]5]6]7
MO T[0[T[0[1[0]T][
pofolififofo]t]i]5
»ofofofo[T[T]1]1[®

BIT SET/RESET FLAG
— I BT

Any lines of port c can be set or reset individually without affecting other lines using this mode. Let us set PC0 and PC3 bits using this mode.

PROGRAM:

	ADDRESS
	OPCODES
	LABEL
	MNEMONICS
	OPERAND
	COMMENTS

	4100
	
	START:
	MVI
	A, 01
	Set PC0

	4101
	
	
	
	
	

	4102
	
	
	OUT
	C6
	Send Mode Control word

	4103
	
	
	
	
	

	4104
	
	
	MVI
	A,07
	Set PC3

	4105
	
	
	
	
	

	4106
	
	
	OUT
	C6
	Send Mode Control word

	4107
	
	
	
	
	

	4109
	
	
	HLT
	
	Stop the program.

RESULT:

Thus 8255 is interfaced and its characteristics in mode0,mode1 and BSR mode is studied.

6. INTERFACING 8253 TIMER WITH 8085

Interfacing 8253 Programmable Interval Timer with 8085 (p

AIM:

To interface 8253 Interface board to 8085 (p and verify the operation of 8253in six different modes.

APPARATUS REQUIRED:

8085 (p kit, 8253 Interface board, DC regulated power supply, VXT parallel bus, CRO.

Mode 0 – Interrupt on terminal count:

The output will be initially low after mode set operations. After loading the counter, the output will be remaining low while counting and on terminal count; the output will become high, until reloaded again.

Let us set the channel 0 in mode 0. Connect the CLK 0 to the debounce circuit by changing the jumper J3 and then execute the following program.

Program:

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	
	START:
	MVI
	A, 30
	Channel 0 in mode 0

	4102
	
	
	OUT
	CE
	Send Mode Control word

	4104
	
	
	MVI
	A, 05
	LSB of count

	4106
	
	
	OUT
	C8
	Write count to register

	4108
	
	
	MVI
	A, 00
	MSB of count

	410A
	
	
	OUT
	C8
	Write count to register

	410C
	
	
	HLT
	
	

It is observed in CRO that the output of Channel 0 is initially LOW. After giving six clock pulses, the output goes HIGH.

Mode 1 – Programmable ONE-SHOT:

After loading the counter, the output will remain low following the rising edge of the gate input. The output will go high on the terminal count. It is retriggerable; hence the output will remain low for the full count, after any rising edge of the gate input.

Example:

The following program initializes channel 0 of 8253 in Mode 1 and also initiates triggering of Gate 0. OUT 0 goes low, as clock pulse after triggering the goes back to high level after 5 clock pulses. Execute the program, give clock pulses through the debounce logic and verify using CRO.

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	
	START:
	MVI
	A, 32
	Channel 0 in mode 1

	4102
	
	
	OUT
	CE
	Send Mode Control word

	4104
	
	
	MVI
	A, 05
	LSB of count

	4106
	
	
	OUT
	C8
	Write count to register

	4108
	
	
	MVI
	A, 00
	MSB of count

	410A
	
	
	OUT
	C8
	Write count to register

	410C
	
	
	OUT
	D0
	Trigger Gate0

	4100
	
	
	HLT
	
	

Mode 2 – Rate Generator:

It is a simple divide by N counter. The output will be low for one period of the input clock. The period from one output pulse to the next equals the number of input counts in the count register. If the count register is reloaded between output pulses the present period will not be affected but the subsequent period will reflect the new value.

Example:

Using Mode 2, Let us divide the clock present at Channel 1 by 10. Connect the CLK1 to PCLK.

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	3E 74
	START:
	MVI
	A, 74
	Channel 1 in mode 2

	4102
	D3 CE
	
	OUT
	CE
	Send Mode Control word

	4104
	3E 0A
	
	MVI
	A, 0A
	LSB of count

	4106
	D3 CA
	
	OUT
	CA
	Write count to register

	4108
	3E 00
	
	MVI
	A, 00
	MSB of count

	410A
	D3 CA
	
	OUT
	CA
	Write count to register

	410C
	76
	
	HLT
	
	

In CRO observe simultaneously the input clock to channel 1 and the output at Out1.

Mode 3 Square wave generator:

It is similar to Mode 2 except that the output will remain high until one half of count and go low for the other half for even number count. If the count is odd, the output will be high for (count + 1)/2 counts. This mode is used of generating Baud rate for 8251A (USART).

Example:

We utilize Mode 0 to generate a square wave of frequency 150 KHz at channel 0.

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	3E 36
	START:
	MVI
	A, 36
	Channel 0 in mode 3

	4102
	D3 CE
	
	OUT
	CE
	Send Mode Control word

	4104
	3E 0A
	
	MVI
	A, 0A
	LSB of count

	4106
	D3 C8
	
	OUT
	C8
	Write count to register

	4108
	3E 00
	
	MVI
	A, 00
	MSB of count

	410A
	D3 C8
	
	OUT
	C8
	Write count to register

	410C
	76
	
	HLT
	
	

Set the jumper, so that the clock 0 of 8253 is given a square wave of frequency 1.5 MHz. This program divides this PCLK by 10 and thus the output at channel 0 is 150 KHz.

Vary the frequency by varying the count. Here the maximum count is FFFF H. So, the square wave will remain high for 7FFF H counts and remain low for 7FFF H counts. Thus with the input clock frequency of 1.5 MHz, which corresponds to a period of 0.067 microseconds, the resulting square wave has an ON time of 0.02184 microseconds and an OFF time of 0.02184 microseconds.

To increase the time period of square wave, set the jumpers such that CLK2 of 8253 is connected to OUT 0. Using the above-mentioned program, output a square wave of frequency 150 KHz at channel 0. Now this is the clock to channel 2.

Mode 4: Software Triggered Strobe:

The output is high after mode is set and also during counting. On terminal count, the output will go low for one clock period and becomes high again. This mode can be used for interrupt generation.

The following program initializes channel 2 of 8253 in mode 4.

Example:

Connect OUT 0 to CLK 2 (jumper J1). Execute the program and observe the output OUT 2. Counter 2 will generate a pulse after 1 second.

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	
	START:
	MVI
	A, 36
	Channel 0 in mode 0

	4102
	
	
	OUT
	CE
	Send Mode Control word

	4104
	
	
	MVI
	A, 0A
	LSB of count

	4106
	
	
	OUT
	C8
	Write count to register

	4108
	
	
	MVI
	A, 00
	MSB of count

	410A
	
	
	OUT
	C8
	Write count to register

	410C
	
	
	MVI
	A, B8
	Channel 2 in Mode 4

	410E
	
	
	OUT
	CE
	Send Mode control Word

	4110
	
	
	MVI
	A, 98
	LSB of Count

	4112
	
	
	OUT
	CC
	Write Count to register

	4114
	
	
	MVI
	A, 3A
	MSB of Count

	4116
	
	
	OUT
	CC
	Write Count to register

	4118
	
	
	HLT
	
	

Mode 5 Hardware triggered strobe:

Counter starts counting after rising edge of trigger input and output goes low for one clock period when terminal count is reached. The counter is retriggerable.

Example:

The program that follows initializes channel 0 in mode 5 and also triggers Gate 0. Connect CLK 0 to debounce circuit.

Execute the program. After giving Six clock pulses, you can see using CRO, the initially HIGH output goes LOW. The output (OUT 0 pin) goes high on the next clock pulse.

	Address
	Opcodes
	Label
	Mnemonic
	Operands
	Comments

	4100
	
	START:
	MVI
	A, 1A
	Channel 0 in mode 5

	4102
	
	
	OUT
	CE
	Send Mode Control word

	4104
	
	
	MVI
	A, 05
	LSB of count

	4106
	
	
	OUT
	C8
	Write count to register

	4108
	
	
	MVI
	A, 00
	MSB of count

	410A
	
	
	OUT
	D0
	Trigger Gate 0

	410C
	
	
	HLT
	
	

Result:

Thus the 8253 has been interfaced to 8085 (p and six different modes of 8253 have been studied.

7. INTERFACING 8279 WITH 8085

8. INTERFACING 8251 WITH 8085

9. 8051 - SUM OF ELEMENTS IN AN ARRAY

AIM:

To find the sum of elements in an array.

ALGORITHM:

1. Load the array in the consecutive memory location and initialize the memory pointer with the starting address.
2. Load the total number of elements in a separate register as a counter.
3. Clear the accumulator.
4. Load the other register with the value of the memory pointer.
5. Add the register with the accumulator.
6. Check for carry, if exist, increment the carry register by 1. otherwise, continue
7. Decrement the counter and if it reaches 0, stop. Otherwise increment the memory pointer by 1 and go to step 4.
RESULT:

The sum of elements in an array is calculated.

PROGRAM:

MOV DPTR, #4200

MOVX A, @DPTR

MOV R0, A

MOV B, #00

MOV R1, B

INC DPTR

LOOP2:
CLR C

MOVX A, @DPTR

ADD A, B

MOV B, A

JNC LOOP

INC R1

LOOP:

INC DPTR

DJNZ R0, LOOP2

MOV DPTR, #4500

MOV A, R1

MOVX @DPTR, A

INC DPTR

MOV A, B

MOVX @DPTR, A

HLT:

SJMP HLT

INPUT

OUTPUT:

4200
04

4500
0F

4201
05

4501
00

4201
06

4202
03

4203
02

10(A).8051 - HEXADECIMAL TO DECIMAL CONVERSION
AIM:

To perform hexadecimal to decimal conversion.

ALGORITHM:

1. Load the number to be converted into the accumulator.

2. If the number is less than 100 (64H), go to next step; otherwise, subtract 100 (64H) repeatedly until the remainder is less than 100 (64H). Have the count(100’s value) in separate register which is the carry.

3. If the number is less than 10 (0AH), go to next step; otherwise, subtract 10 (0AH) repeatedly until the remainder is less than 10 (0AH). Have the count(ten’s value) in separate register.

4. The accumulator now has the units.

5. Multiply the ten’s value by 10 and add it with the units.

6. Store the result and carry in the specified memory location.

RESULT

The given hexadecimal number is converted into decimal number.

PROGRAM:

MOV DPTR, #4500

MOVX A, @DPTR

MOV B, #64

DIV A, B

MOV DPTR, #4501

MOVX @DPTR, A

MOV A, B

MOV B, #0A

DIV A, B

INC DPTR

MOVX @DPTR, A

INC DPTR

MOV A, B

MOVX @DPTR, A

HLT:

SJMP HLT

INPUT

OUTPUT:

4500
D7

4501
15

4502
02

10(B).8051 - DECIMAL TO HEXADECIMAL CONVERSION

AIM:

To perform decimal to hexadecimal conversion

ALGORITHM:

1. Load the number to be converted in the accumulator.

2. Separate the higher order digit from lower order.

3. Multiply the higher order digit by 10 and add it with the lower order digit.

4. Store the result in the specified memory location.

RESULT:

The given decimal number is converted to hexadecimal number.

PROGRAM:

MOV DPTR, #4500

MOVX A, @DPTR

MOV B, #0A

MUL A, B

MOV B, A

INC DPTR

MOVX A, @DPTR

ADD A, B

INC DPTR

MOVX @DPTR, A

HLT:

SJMP HLT

INPUT

OUTPUT

4500
23

4501
17

13. STEPPER MOTOR INTERFACING WITH 8051

AIM:

To interface a stepper motor with 8051 microcontroller and operate it.

THEORY:

A motor in which the rotor is able to assume only discrete stationary angular position is a stepper motor. The rotary motion occurs in a step-wise manner from one equilibrium position to the next. Stepper Motors are used very wisely in position control systems like printers, disk drives, process control machine tools, etc.

The basic two-phase stepper motor consists of two pairs of stator poles. Each of the four poles has its own winding. The excitation of any one winding generates a North Pole. A South Pole gets induced at the diametrically opposite side. The rotor magnetic system has two end faces. It is a permanent magnet with one face as South Pole and the other as North Pole.

The Stepper Motor windings A1, A2, B1, B2 are cyclically excited with a DC current to run the motor in clockwise direction. By reversing the phase sequence as A1, B2, A2, B1, anticlockwise stepping can be obtained.

2-PHASE SWITCHING SCHEME:

In this scheme, any two adjacent stator windings are energized. The switching scheme is shown in the table given below. This scheme produces more torque.

	ANTICLOCKWISE
	CLOCKWISE

	STEP
	A1
	A2
	B1
	B2
	DATA
	STEP
	A1
	A2
	B1
	B2
	DATA

	1
	1
	0
	0
	1
	9h
	1
	1
	0
	1
	0
	Ah

	2
	0
	1
	0
	1
	5h
	2
	0
	1
	1
	0
	6h

	3
	0
	1
	1
	0
	6h
	3
	0
	1
	0
	1
	5h

	4
	1
	0
	1
	0
	Ah
	4
	1
	0
	0
	1
	9h

ADDRESS DECODING LOGIC:

The 74138 chip is used for generating the address decoding logic to generate the device select pulses, CS1 & CS2 for selecting the IC 74175.The 74175 latches the data bus to the stepper motor driving circuitry.

Stepper Motor requires logic signals of relatively high power. Therefore, the interface circuitry that generates the driving pulses use silicon darlington pair transistors. The inputs for the interface circuit are TTL pulses generated under software control using the Microcontroller Kit. The TTL levels of pulse sequence from the data bus is translated to high voltage output pulses using a buffer 7407 with open collector.

PROGRAM :

	Address
	OPCODES
	Label
	
	
	Comments

	
	
	
	ORG
	4100h
	

	4100
	
	START:
	MOV
	DPTR, #TABLE
	Load the start address of switching scheme data TABLE into Data Pointer (DPTR)

	4103
	
	
	MOV
	R0, #04
	Load the count in R0

	4105
	
	LOOP:
	MOVX
	A, @DPTR
	Load the number in TABLE into A

	4106
	
	
	PUSH
	DPH
	Push DPTR value to Stack

	4108
	
	
	PUSH
	DPL
	

	410A
	
	
	MOV
	DPTR, #0FFC0h
	Load the Motor port address into DPTR

	410D
	
	
	MOVX
	@DPTR, A
	Send the value in A to stepper Motor port address

	410E
	
	
	MOV
	R4, #0FFh
	Delay loop to cause a specific amount of time delay before next data item is sent to the Motor

	4110
	
	DELAY:
	MOV
	R5, #0FFh
	

	4112
	
	DELAY1:
	DJNZ
	R5, DELAY1
	

	4114
	
	
	DJNZ
	R4, DELAY
	

	4116
	
	
	POP
	DPL
	POP back DPTR value from Stack

	4118
	
	
	POP
	DPH
	

	411A
	
	
	INC
	DPTR
	Increment DPTR to point to next item in the table

	411B
	
	
	DJNZ
	R0, LOOP
	Decrement R0, if not zero repeat the loop

	411D
	
	
	SJMP
	START
	Short jump to Start of the program to make the motor rotate continuously

	411F
	
	TABLE:
	DB
	09 05 06 0Ah
	Values as per two-phase switching scheme

PROCEDURE:

Enter the above program starting from location 4100.and execute the same. The stepper motor rotates. Varying the count at R4 and R5 can vary the speed. Entering the data in the look-up TABLE in the reverse order can vary direction of rotation.

RESULT:

Thus a stepper motor was interfaced with 8051 and run in forward and reverse directions at various speeds.

START

[HL] 4500H

[A] � [M]

[A]�[A]+[M]

[HL]�[HL]+1

STOP

[HL]�[HL]+1

[M] � [A]

[C] 00H

[M] � [C]

[HL]�[HL]+1

Is there a

 Carry ?

[C]�[C]+1

START

[HL] � 4500H

[A] � [M]

Is there a

 Borrow ?

[A]�[A]-[M]

[HL]�[HL]+1

[C] � 00H

[C]�[C]+1

STOP

[HL]�[HL]+1

[M] � [A]

[M] � [C]

[HL]�[HL]+1

Complement [A]

Add 01H to [A]

START

[HL] (4500

 B (M

[HL] ([HL]+1

 A (00

 C (00

 [A] ([A] +[M]

Is there any carry

 C (C+1

 B (B-1

IS B=0

A

A

STOP

[HL]�[HL]+1

[M] � [A]

[M] � [C]

[HL]�[HL]+1

B (00

M (A-M

 [B] ([B] +1

IS A<0

 A (A+ M

 B (B-1

[HL] (4500

 A (M

[HL] ([HL]+1

START

STOP

[HL]�[HL]+1

[M] � [A]

[M] � [B]

[HL]�[HL]+1

START

[DE] [HL]

[L] [8052H]

[H] [8053H]

[A]�00H

[HL]�[HL]+[DE]

[L] [8050 H]

[H] [8051 H]

Is there a

 Carry?

STOP

[8054]�[L]

[8055] �[H]

[A]�[A]+1

[8056] � [A]

START

[L] [8050 H]

[H] [8051 H]

[DE] [HL]

[L] [8052H]

[H] [8053H]

[8056] � [C]

[HL]�[HL]-[DE]

Is there a

 borrow?

[C]�[C]+1

[8055] �[H]

STOP

[8054]�[L]

START

L [8050]

H � [8051]

L � [8052]

H � [8053]

SP� HL

DE HL

HL�0000

BC�0000

HL�HL+SP

Is Carry flag set?

BC�BC+1

DE�DE+1

Is Zero flag set?

A

A

[8054]		L

[8055]		H

[8056]		C

[8057]		B

STOP

START

L [8051]

H � [8052]

HL DE

L �[8050]

H � [8051]

BC� 0000H

A L; A�A- E

L�A

A�H

A�A- H- Borrow

H�A

BC�BC+ 1

Is Carry flag set ?

A

A

BC�BC- 1

HL�HL+DE

L�[8054]

H�[8055]

A�C

[8056] �A

A�B

[8057] �A

STOP

[B] (04H

[HL] ([8100H]

[A] ([HL]

[HL ([HL] + 1

IS

[A] < [HL]?

[A]([HL]

[8105] ([A]

 START

[B] ([B]-1

IS

[B] = 0?

 STOP

[B] (04H

[HL] ([8100H]

[A] ([HL]

[HL ([HL] + 1

IS

[A] < [HL]?

[A]([HL]

[8105] ([A]

 START

[B] ([B]-1

IS

[B] = 0?

 STOP

[B] (04H

[HL] ([8100H]

[A] ([HL]

[HL ([HL] + 1

IS

[A] < [HL]?

[D]([HL]

[HL] ([A]

[HL] ([HL] - 1

[HL] ([D]

[HL] ([HL] + 1

[C] ([C] – 01 H

A

[C] (04H

 START

IS

[C] = 0?

A

[B] ([B]-1

IS

[B] = 0?

 STOP

[B] (04H

[HL] ([8100H]

[A] ([HL]

[HL ([HL] + 1

IS

[A] < [HL]?

[D]([HL]

[HL] ([A]

[HL] ([HL] - 1

[HL] ([D]

[HL] ([HL] + 1

[C] ([C] – 01 H

A

[C] (04H

 START

IS

[C] = 0?

A

[B] ([B]-1

IS

[B] = 0?

 STOP

 START

HL � 4500H

A � 00

B � 00H

A � A +1

Decimal adjust accumulator

B � B+1

A � B

 Is

A=M?

8101 � A

Stop

Stop

 START

HL � 8100H

A � 00

B � 00H

A � A +1

Decimal adjust accumulator

B � B+1

D � A, A � B,

 Is

A=M?

8101 � A, A C

8102 A

C � 00H

C � C+1

 Is there carry?

START

[HL] 4500H

[A] � [M]

[A]�[A]+[M]

Decimal Adjust Accumulator

[HL]�[HL]+1

STOP

[HL]�[HL]+1

[M] � [A]

[C] 00H

[M] � [C]

[HL]�[HL]+1

Is there a

 Carry ?

[C]�[C]+1

START

HL � HL+ 1

C � M

A � 99

[A] � [A] �– [C]

[A] � [A]+1

Is there a

 Carry ?

[A]�[A]+[B]

DAA

[D] � 00H

HL � 4500

B � M

STOP

[D]�[D]+1

[4502] � A

[4503] � D

[HL]�[HL]+1

HL HL+1

DE � DE+1; DE� DE+1

Is A=04H?

Increment HL reg. pair

C 00H

HL 8500H

DE 8600H

HL HL+1

DE � DE+1; DE� DE+1

B A

A A+B

START

HL � HL-1

DE � DE-1;

B A

A

Call subroutine

MUL

Call subroutine

 STORE

A

Call subroutine

MUL

Call subroutine

MUL

A A+B

Call subroutine

 STORE

Call subroutine

MUL

A � C

BA

B

STOP

Call subroutine

MUL

MUL

H � H- 1

Is H=0 ?

[A] � [[DE]]

D � A

H � M

[D]�[D]+1

[H]�85; [D]�86

H � H- 1

Is H=0 ?

RET

STORE

B � 87

[A]�[[BC]]

C � C+ 1

RET

PAGE
13

[image: image90.wmf]

[image: image91.wmf]

[image: image92.wmf]

[image: image93.wmf]

[image: image94.wmf]

[image: image95.wmf]

[image: image96.wmf]

[image: image97.wmf]

[image: image98.wmf]

[image: image99.wmf]

[image: image100.wmf]

[image: image101.wmf]

[image: image102.wmf]

[image: image103.wmf]

[image: image104.wmf]

[image: image105.emf]

[image: image106.emf]

[image: image107.emf]

[image: image108.emf]

[image: image109.emf]

[image: image110.emf]

[image: image111.emf]

[image: image112.wmf]

[image: image113.wmf]

[image: image114.wmf]

[image: image115.wmf]

[image: image116.wmf]

[image: image117.wmf]

[image: image118.wmf]

[image: image119.wmf]

[image: image120.wmf]

[image: image121.wmf]

[image: image122.wmf]

